①求A.B坐標(biāo)及. 查看更多

 

題目列表(包括答案和解析)

平面直角坐標(biāo)系xOy中,拋物線x軸交于點A、點B,與y軸的正半軸交于點C,點 A的坐標(biāo)為(1,0),OB=OC,拋物線的頂點為D

 (1) 求此拋物線的解析式;

(2) 若此拋物線的對稱軸上的點P滿足∠APB=∠ACB,求點P的坐標(biāo);

 (3) Q為線段BD上一點,點A關(guān)于∠AQB的平分線的對稱點為,若,求點Q的坐標(biāo)和此時△的面積.

【解析】此題考核二次函數(shù)的的解析式的求解,以及運用圖像與坐標(biāo)軸的交點問題,能求解得到a,c關(guān)系式,然后把原解析式化簡為關(guān)于a的表達(dá)式,然后借助于根的情況得到點B的坐標(biāo),從而得到與坐標(biāo)軸y軸點C的坐標(biāo),得到a的值,得到求解。最后一問利用點A關(guān)于∠AQB的平分線的對稱點為,對稱性求解得到點的坐標(biāo),進(jìn)而求解面積。

 

查看答案和解析>>

平面直角坐標(biāo)系xOy中,拋物線x軸交于點A、點B,與y軸的正半軸交于點C,點 A的坐標(biāo)為(1, 0),OB=OC,拋物線的頂點為D

 (1) 求此拋物線的解析式;

(2) 若此拋物線的對稱軸上的點P滿足∠APB=∠ACB,求點P的坐標(biāo);

 (3) Q為線段BD上一點,點A關(guān)于∠AQB的平分線的對稱點為,若,求點Q的坐標(biāo)和此時△的面積.

【解析】此題考核二次函數(shù)的的解析式的求解,以及運用圖像與坐標(biāo)軸的交點問題,能求解得到a,c關(guān)系式,然后把原解析式化簡為關(guān)于a的表達(dá)式,然后借助于根的情況得到點B的坐標(biāo),從而得到與坐標(biāo)軸y軸點C的坐標(biāo),得到a的值,得到求解。最后一問利用點A關(guān)于∠AQB的平分線的對稱點為,對稱性求解得到點的坐標(biāo),進(jìn)而求解面積。

 

查看答案和解析>>

已知直角坐標(biāo)系中菱形ABCD的位置如圖,C,D兩點的坐標(biāo)分別為(4,0),(0,3),現(xiàn)有兩動點P,Q分別從A,C同時出發(fā),點P沿線段AD向終點D運動,點Q沿折線CBA向終點A運動,設(shè)運動時間為t秒。
(1)填空:菱形ABCD的邊長是_______、面積是______、 高BE的長是_______;
(2)探究下列問題:
①若點P的速度為每秒1個單位,點Q的速度為每秒2個單位.當(dāng)點Q在線段BA上時,求△APQ的面積S關(guān)于t的函數(shù)關(guān)系式,以及S的最大值;
②若點P的速度為每秒1個單位,點Q的速度變?yōu)槊棵雓個單位,在運動過程中,任何時刻都有相應(yīng)的k值,使得△APQ沿它的一邊翻折,翻折前后兩個三角形組成的四邊形為菱形,請?zhí)骄慨?dāng)t=4秒時的情形,并求出k的值。

查看答案和解析>>

在平面直角坐標(biāo)系xOy中,拋物線y=﹣x2+bx+c與x軸交于A、B兩點(點A在點B的左側(cè)),過點A的直線y=kx+1交拋物線于點C(2,3)。
(1)求直線AC及拋物線的解析式;
(2)若直線y=kx+1與拋物線的對稱軸交于點E,以點E為中心將直線y=kx+1順時針旋轉(zhuǎn)90°得到直線l,設(shè)直線l與y軸的交點為P,求△APE的面積;
(3)若G為拋物線上一點,是否存在x軸上的點F,使以B、E、F、G為頂點的四邊形為平行四邊形?若存在,直接寫出點F的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

在平面直角坐標(biāo)系xOy中,反比例函數(shù)的圖象與拋物線交于點A(3, n)。
(1)求n的值及拋物線的解析式;
(2) 過點A作直線BC,交x軸于點B,交反比例函數(shù)(x>0)的圖象于點C,且AC=2AB,求B、C兩點的坐標(biāo);
(3)在(2)的條件下,若點P是拋物線對稱軸上的一點,且點P到x軸和直線BC的距離相等,求點P的坐標(biāo)。

查看答案和解析>>


同步練習(xí)冊答案