11.下列有關(guān)平面向量分解定理的四個命題中.所有正確命題的序號是 .(填寫命題所對應(yīng)的序號即可) ① 一個平面內(nèi)有且只有一對不平行的向量可作為表示該平面所有向量的基, ② 一個平面內(nèi)有無數(shù)多對不平行向量可作為表示該平面內(nèi)所有向量的基, ③ 平面向量的基向量可能互相垂直,④ 一個平面內(nèi)任一非零向量都可唯一地表示成該平面內(nèi)三個互不平行向量的線性組合. 查看更多

 

題目列表(包括答案和解析)

下列有關(guān)平面向量分解定理的四個命題中,所有正確命題的序號是______.(填寫命題所對應(yīng)的序號即可)
①一個平面內(nèi)有且只有一對不平行的向量可作為表示該平面所有向量的基;
②一個平面內(nèi)有無數(shù)多對不平行向量可作為表示該平面內(nèi)所有向量的基;
③平面向量的基向量可能互相垂直;
④一個平面內(nèi)任一非零向量都可唯一地表示成該平面內(nèi)三個互不平行向量的線性組合.

查看答案和解析>>

下列有關(guān)平面向量分解定理的四個命題中,所有正確命題的序號是    .(填寫命題所對應(yīng)的序號即可)
①一個平面內(nèi)有且只有一對不平行的向量可作為表示該平面所有向量的基;
②一個平面內(nèi)有無數(shù)多對不平行向量可作為表示該平面內(nèi)所有向量的基;
③平面向量的基向量可能互相垂直;
④一個平面內(nèi)任一非零向量都可唯一地表示成該平面內(nèi)三個互不平行向量的線性組合.

查看答案和解析>>

下列有關(guān)平面向量分解定理的四個命題中,所有正確命題的序號是    .(填寫命題所對應(yīng)的序號即可)
①一個平面內(nèi)有且只有一對不平行的向量可作為表示該平面所有向量的基;
②一個平面內(nèi)有無數(shù)多對不平行向量可作為表示該平面內(nèi)所有向量的基;
③平面向量的基向量可能互相垂直;
④一個平面內(nèi)任一非零向量都可唯一地表示成該平面內(nèi)三個互不平行向量的線性組合.

查看答案和解析>>

下列有關(guān)平面向量分解定理的四個命題中,所有正確命題的序號是_______(填寫命題所對應(yīng)的序號即可)
(1)一個平面內(nèi)有且只有一對不平行的可作為表示該平面所有的基;
(2)一個平面內(nèi)有無數(shù)多對不平行可作為表示該平面內(nèi)所有的基;
(3)平面的基可能互相垂直;
(4)一個平面內(nèi)任一非零都可唯一地表示成該平面內(nèi)三個互不平行的線性組合.

查看答案和解析>>

(2008•普陀區(qū)一模)下列有關(guān)平面向量分解定理的四個命題中,所有正確命題的序號是
②、③
②、③
.(填寫命題所對應(yīng)的序號即可)
①一個平面內(nèi)有且只有一對不平行的向量可作為表示該平面所有向量的基;
②一個平面內(nèi)有無數(shù)多對不平行向量可作為表示該平面內(nèi)所有向量的基;
③平面向量的基向量可能互相垂直;
④一個平面內(nèi)任一非零向量都可唯一地表示成該平面內(nèi)三個互不平行向量的線性組合.

查看答案和解析>>

一、填空題:(5’×11=55’)

題號

1

2

3

4

5

6

答案

0

(1,2)

2

題號

7

8

9

10

11

 

答案

4

8.3

②、③

 

二、選擇題:(4’×4=16’)

題號

12

13

14

  • 20090116

    答案

    A

    C

    B

    B

    三、解答題:(12’+14’+15’+16’+22’=79’)

    16.(理)解:設(shè)為橢圓上的動點(diǎn),由于橢圓方程為,故

    因?yàn)?sub>,所以

        推出

    依題意可知,當(dāng)時,取得最小值.而,

    故有,解得

    又點(diǎn)在橢圓的長軸上,即.故實(shí)數(shù)的取值范圍是

    17.解:(1)當(dāng)時,;

    當(dāng)時,;

    當(dāng)時,;(不單獨(dú)分析時的情況不扣分)

    當(dāng)時,

    (2)由(1)知:當(dāng)時,集合中的元素的個數(shù)無限;

    當(dāng)時,集合中的元素的個數(shù)有限,此時集合為有限集.

    因?yàn)?sub>,當(dāng)且僅當(dāng)時取等號,

    所以當(dāng)時,集合的元素個數(shù)最少.

    此時,故集合

    18.(本題滿分15分,1小題7分,第2小題8

    解:(1)如圖,建立空間直角坐標(biāo)系.不妨設(shè)

    依題意,可得點(diǎn)的坐標(biāo),,

        于是,

       由,則異面直線所成角的

    大小為

    (2)解:連結(jié). 由

    的中點(diǎn),得;

    ,得

    ,因此

    由直三棱柱的體積為.可得

    所以,四棱錐的體積為

    19.解:(1)根據(jù)三條規(guī)律,可知該函數(shù)為周期函數(shù),且周期為12.

    由此可得,;

    由規(guī)律②可知,,

    ;

    又當(dāng)時,

    所以,,由條件是正整數(shù),故取

        綜上可得,符合條件.

    (2) 解法一:由條件,,可得

    ,

    ,

    因?yàn)?sub>,所以當(dāng)時,,

    ,即一年中的7,8,9,10四個月是該地區(qū)的旅游“旺季”.

    解法二:列表,用計算器可算得

    月份

    6

    7

    8

    9

    10

    11

    人數(shù)

    383

    463

    499

    482

    416

    319

    故一年中的7,8,9,10四個月是該地區(qū)的旅游“旺季”.

    20.解:(1)依條件得: 則無窮等比數(shù)列各項(xiàng)的和為:

         ;

      (2)解法一:設(shè)此子數(shù)列的首項(xiàng)為,公比為,由條件得:,

    ,即    

     則 .

    所以,滿足條件的無窮等比子數(shù)列存在且唯一,它的首項(xiàng)、公比均為,

    其通項(xiàng)公式為,.

    解法二:由條件,可設(shè)此子數(shù)列的首項(xiàng)為,公比為

    ………… ①

    又若,則對每一

    都有………… ②

    從①、②得;

    ;

    因而滿足條件的無窮等比子數(shù)列存在且唯一,此子數(shù)列是首項(xiàng)、公比均為無窮等比子

    數(shù)列,通項(xiàng)公式為,

    (3)以下給出若干解答供參考,評分方法參考本小題閱卷說明:

    問題一:是否存在數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們各項(xiàng)的和互為倒數(shù)?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

    解:假設(shè)存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使它們的各項(xiàng)和之積為1。設(shè)這兩個子數(shù)列的首項(xiàng)、公比分別為,其中,則

    ,

    因?yàn)榈仁阶筮吇驗(yàn)榕紨?shù),或?yàn)橐粋分?jǐn)?shù),而等式右邊為兩個奇數(shù)的乘積,還是一個奇數(shù)。故等式不可能成立。所以這樣的兩個子數(shù)列不存在。

    【以上解答屬于層級3,可得設(shè)計分4分,解答分6分】

    問題二:是否存在數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們各項(xiàng)的和相等?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

    解:假設(shè)存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使它們的各項(xiàng)和相等。設(shè)這兩個子數(shù)列的首項(xiàng)、公比分別為,其中,則

    ………… ①

    ,則①,矛盾;若,則①

    ,矛盾;故必有,不妨設(shè),則

    ………… ②

    1當(dāng)時,②,等式左邊是偶數(shù),

    右邊是奇數(shù),矛盾;

    2當(dāng)時,②

    ,

    兩個等式的左、右端的奇偶性均矛盾;

    綜合可得,不存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們的各項(xiàng)和相等。

    【以上解答屬于層級4,可得設(shè)計分5分,解答分7分】

    問題三:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項(xiàng)和等于另一個數(shù)列的各項(xiàng)和的倍?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

    解:假設(shè)存在滿足條件的原數(shù)列的兩個不同的無窮等比子數(shù)列。設(shè)這兩個子數(shù)列的首項(xiàng)、公比分別為,其中,則

    ,

    顯然當(dāng)時,上述等式成立。例如取,,得:

    第一個子數(shù)列:,各項(xiàng)和;第二個子數(shù)列:,

    各項(xiàng)和,有,因而存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項(xiàng)和等于另一個數(shù)列的各項(xiàng)和的倍。

    【以上解答屬層級3,可得設(shè)計分4分,解答分6分.若進(jìn)一步分析完備性,可提高一個層級評分】

    問題四:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項(xiàng)和等于另一個數(shù)列的各項(xiàng)和的倍?并說明理由.解(略):存在。

    問題五:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項(xiàng)和等于另一個數(shù)列的各項(xiàng)和的倍?并說明理由.解(略):不存在.

    【以上問題四、問題五等都屬于層級4的問題設(shè)計,可得設(shè)計分5分。解答分最高7分】

     


    同步練習(xí)冊答案