9.在則以A.B為焦點(diǎn)且過點(diǎn)C的橢圓的離心率等于 查看更多

 

題目列表(包括答案和解析)

在△ABC中,AB=2BC,∠ABC=120°,則以A、B為焦點(diǎn)且過點(diǎn)C的橢圓的離心率等于( 。
A.
1
4
B.
1
2
C.
3
-1
D.
7
-1
3

查看答案和解析>>

在△ABC中,AB=2BC,∠ABC=120°,則以A、B為焦點(diǎn)且過點(diǎn)C的橢圓的離心率等于( )
A.
B.
C.-1
D.

查看答案和解析>>

在△ABC中,AB=2BC,∠ABC=120°,則以A、B為焦點(diǎn)且過點(diǎn)C的橢圓的離心率等于( )
A.
B.
C.-1
D.

查看答案和解析>>

在△ABC中,AB=2BC,∠ABC=120°,則以A、B為焦點(diǎn)且過點(diǎn)C的橢圓的離心率等于


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式-1
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

在△ABC中,∠ACB=60°,sinA∶sinB=8∶5,則以A、B為焦點(diǎn)且過點(diǎn)C的橢圓的離心率為________.

查看答案和解析>>

 

一、選擇題:本大題共12小題,每小題5分,共60分。

1―6AABCBD   7―12ACDCBD

二、填空題:本大題共4小題,每小題5分,共20分。

13.60°  14.-8  15.    16.6

三、解答題:本大題共6小題,共70分,解答應(yīng)寫出文字說明,證明過程或演算步驟。

17.(本小題滿分10分)

   (I)解:因為

       由正弦定理得

       所以

       又

       故   5分

   (II)由

       故

          10分

18.(本小題滿分12分)

   (I)解:當(dāng)

       故   1分

       因為   當(dāng)

       當(dāng)

       故上單調(diào)遞減。   5分

   (II)解:由題意知上恒成立,

       即上恒成立。   7分

       令

       因為   9分       

       故上恒成立等價于

          11分

       解得   12分

19.(本小題滿分12分)

   (I)證明:

          2分

       又

   (II)方法一

       解:過O作

      

       則O1是ABC截面圓的圓心,且BC是直徑,

       過O作于M,則M為PA的中點(diǎn),

       連結(jié)O1A,則四邊形MAO1O為矩形,

          8分

       過O作于E,連EO1­,

       則為二面角O―AC―B的平面角   10分

       在

      

       在

       所以二面角O―AC―B的大小為   12分

       方法二

           同上,   8分

          

          

          

           設(shè)面OAC的法向量為

          

           得

           故

           所以二面角O―AC―B的大小為   12分

    20.(本小題滿分12分)

       (I)解:設(shè)次將球擊破,

        則   5分

       (II)解:對于方案甲,積分卡剩余點(diǎn)數(shù)

           由已知可得

          

          

          

           故

           故   8分

           對于方案乙,積分卡剩余點(diǎn)數(shù)

           由已知可得

          

          

          

          

           故

           故   11分

           故

           所以選擇方案甲積分卡剩余點(diǎn)數(shù)最多     12分

    21.(本小題滿分12分)

           解:依題意設(shè)拋物線方程為,

           直線

           則的方程為

          

           因為

           即

           故

       (I)若

          

           故點(diǎn)B的坐標(biāo)為

           所以直線   5分

       (II)聯(lián)立

          

           則

           又   7分

           故   9分

           因為成等差數(shù)列,

           所以

           故

           將代入上式得

           。   12分

    22.(本小題滿分12分)

       (I)解:

           又

           故   2分

           而

           當(dāng)

           故為增函數(shù)。

           所以的最小值為0   4分

       (II)用數(shù)學(xué)歸納法證明:

           ①當(dāng)

           又

           所以為增函數(shù),即

           則

           所以成立       6分

           ②假設(shè)當(dāng)成立,

           那么當(dāng)

           又為增函數(shù),

          

           則成立。

           由①②知,成立   8分

       (III)證明:由(II)

           得

           故   10分

           則

          

           所以成立   12分

     

     

     

     

     


    同步練習(xí)冊答案