題目列表(包括答案和解析)
已知點P(-3,0),點A在y軸上,點Q在x軸非負半軸上,點M在直線AQ上,滿足·=0,=-.
(1)當點A在y軸上移動時,求動點M的軌跡C的方程;
(2)設軌跡C的準線為l,焦點為F,過F作直線m交軌跡C于G,H兩點,過點G作平行于軌跡C的對稱軸的直線n,且n∩l=E,試問點E,O,H(O為坐標原點)是否在同一條直線上?并說明理由.
x2 |
a2 |
y2 |
b2 |
1 |
4 |
1 |
2 |
1.C 2.B 3.B 4.D 5.C 6.A 7.B 8.B 9.D 10.C
11. 12.1 13. 14.4 15.
16.當a>1時,有,∴,∴,∴,∴當0<a<1時,有,∴.
綜上,當a>1時,;當0<a<1時,
17.(Ⅰ)有0枚正面朝上的概率為,有1枚正面朝上的概率為:
∴
(Ⅱ)出現(xiàn)奇數(shù)枚正面朝上的概率為:
∴出現(xiàn)偶數(shù)枚正面朝上的概率為,∴概率相等.
18.(Ⅰ)在梯形ABCD中,∵,
∴四邊形ABCD是等腰梯形,
且
∴,∴
又∵平面平面ABCD,交線為AC,∴平面ACFE.
(Ⅱ)當時,平面BDF. 在梯形ABCD中,設,連結FN,則
∵而,∴∴MFAN,
∴四邊形ANFM是平行四邊形. ∴
又∵平面BDF,平面BDF. ∴平面BDF.
19.(Ⅰ)設橢圓方程為,則有,∴a=6, b=3.
∴橢圓C的方程為
(Ⅱ),設點,則
∴,
∵,∴,∴∴的最小值為6.
20.(Ⅰ)設,,
∴在單調(diào)遞增.
(Ⅱ)當時,,又,,即;
當時,,,由,得或.
的值域為
(Ⅲ)當x=0時,,∴x=0為方程的解.
當x>0時,,∴,∴
當x<0時,,∴,∴
即看函數(shù)
與函數(shù)圖象有兩個交點時k的取值范圍,應用導數(shù)畫出的大致圖象,∴,∴
21.(Ⅰ)令n=1有,,∴,∴.
(Ⅱ)∵……① ∴當時,有……②
①-②有,
∴
將以上各式左右兩端分別相乘,得,∴
當n=1,2時也成立,∴.
(Ⅲ),當時,
,
∵
∴
當時,
當時,
當時,
∴
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com