∴含紅球個(gè)數(shù)的數(shù)學(xué)期望為1×+2×=1.2評述:本題考查數(shù)學(xué)期望的概念.概率的概念及它們的計(jì)算. 查看更多

 

題目列表(包括答案和解析)

袋子中裝有若干個(gè)均勻的紅球和白球,從中摸一個(gè)紅球的概率是,從中摸出一個(gè)紅球的概率為.

⑴從A中有放回地摸球,每次摸出一個(gè),有3次摸到紅球則停止.

①       求恰好摸5次停止的概率;

② 記5次之內(nèi)(含5次)摸到紅球的次數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

⑵若A、B兩個(gè)袋子中的球數(shù)之比為1:2,將A、B中的球裝在一起后,從中摸出一個(gè)紅球的概率是,求的值.

 

查看答案和解析>>

袋子A和B中裝有若干個(gè)均勻的紅球和白球,從A中摸出一個(gè)紅球的概率是,從B中摸出一個(gè)紅球的概率為p.

(1)從A中有放回地摸球,每次摸出一個(gè),有3次摸到紅球即停止.①求恰好摸5次停止的的概率;②記5次內(nèi)(含5次)摸到紅球的次數(shù)為ξ,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望Eξ.

(2)若A、B兩個(gè)袋子中的球數(shù)之比為1∶2,將A、B中的球裝在一起后,從中摸出一個(gè)紅球的概率是,求p的值.

查看答案和解析>>

19.袋子AB中裝有若干個(gè)均勻的紅球和白球,從A中摸出一個(gè)紅球的概率是,從B中摸出一個(gè)紅球的概率為p

  (Ⅰ) 從A中有放回地摸球,每次摸出一個(gè),有3次摸到紅球即停止.(i)求恰好摸5次停止的概率;(ii)記5次之內(nèi)(含5次)摸到紅球的次數(shù)為,求隨機(jī)變量的分布率及數(shù)學(xué)期望E

   (Ⅱ) 若AB兩個(gè)袋子中的球數(shù)之比為1:2,將AB中的球裝在一起后,從中摸出一個(gè)紅球的概率是,求p的值.

  

查看答案和解析>>

袋子A、B中均裝有若干個(gè)大小相同的紅球和白球,從A中摸出一個(gè)紅球的概率是,從B中摸出一個(gè)紅球的概率為p.

(1)  從A中有放回地摸球,每次摸出一個(gè),有3次摸到紅球即停止。

①求恰好摸5次停止的概率;

②記5次之內(nèi)(含5次)摸到紅球的次數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望。

(2)若A、B兩個(gè)袋子中的球數(shù)之比為1:2,將A、B中的球裝在一起后,從中摸出一個(gè)紅球的概率是,求p的值。

 

查看答案和解析>>

袋子A、B中均裝有若干個(gè)大小相同的紅球和白球,從A中摸出一個(gè)紅球的概率是,從B中摸出一個(gè)紅球的概率為p.
(1)  從A中有放回地摸球,每次摸出一個(gè),有3次摸到紅球即停止。
①求恰好摸5次停止的概率;
②記5次之內(nèi)(含5次)摸到紅球的次數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望。
(2)若A、B兩個(gè)袋子中的球數(shù)之比為1:2,將A、B中的球裝在一起后,從中摸出一個(gè)紅球的概率是,求p的值。

查看答案和解析>>


同步練習(xí)冊答案