袋子A和B中裝有若干個(gè)均勻的紅球和白球,從A中摸出一個(gè)紅球的概率是,從B中摸出一個(gè)紅球的概率為p.

(1)從A中有放回地摸球,每次摸出一個(gè),有3次摸到紅球即停止.①求恰好摸5次停止的的概率;②記5次內(nèi)(含5次)摸到紅球的次數(shù)為ξ,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望Eξ.

(2)若A、B兩個(gè)袋子中的球數(shù)之比為1∶2,將A、B中的球裝在一起后,從中摸出一個(gè)紅球的概率是,求p的值.

解:(1)①C24()2×()2×=.

    ②隨機(jī)變量ξ的取值為0,1,2,3.由n次獨(dú)立重復(fù)試驗(yàn)概率公式得P(ξ=0)=C05(1-)5=.

    P(ξ=1)=C15×()4=,P(ξ=2)=C25()2()3=,P(ξ=3)=1-=.

    ξ的分布列為

ξ

0

1

2

3

P

    ∴Eξ=0×+1×+2×+3×=.

    (2)設(shè)A袋中有m個(gè)球,則B袋中有2m個(gè)球,由=,得p=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

袋子A和B中裝有若干個(gè)均勻的紅球和白球,從A中摸出一個(gè)紅球的概率是
1
3
,從B中摸出一個(gè)紅球的概率為p.
(Ⅰ)從A中有放回地摸球,每次摸出一個(gè),有3次摸到紅球即停止.
(i)求恰好摸5次停止的概率;
(ii)記5次之內(nèi)(含5次)摸到紅球的次數(shù)為ξ,求隨機(jī)變量ξ的分布率及數(shù)學(xué)期望Eξ.
(Ⅱ)若A、B兩個(gè)袋子中的球數(shù)之比為12,將A、B中的球裝在一起后,從中摸出一個(gè)紅球的概率是
2
5
,求p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•浙江模擬)袋子A和B中裝有若干個(gè)均勻的紅球和白球,從A中摸出一個(gè)紅球的概率是
1
3
,從B中摸出一個(gè)紅球的概率為p.若A、B兩個(gè)袋子中的球數(shù)之比為1:2,將A、B中的球裝在一起后,從中摸出一個(gè)紅球的概率是
2
5
,則p的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

袋子A和B中裝有若干個(gè)均勻的紅球和白球,從A中摸出一個(gè)紅球的概率是
1
3
,從B中摸出一個(gè)紅球的概率為P.
(1)從A中有放回地摸球,每次摸出一個(gè),共摸4次.
①恰好有2次摸到紅球的概率;②第一次、第三次摸到紅球的概率.
(2)若A、B兩個(gè)袋子中的球數(shù)之比為4,將A、B中的球裝在一起后,從中摸出一個(gè)紅球的概率是
2
5
,求P的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

袋子A和B中裝有若干個(gè)均勻的紅球和白球,從A中摸出一個(gè)紅球的概率是
1
3
,從B中摸出一個(gè)紅球的概率是
2
3
.現(xiàn)從兩個(gè)袋子中有放回的摸球•
(I)從A中摸球,每次摸出一個(gè),共摸5次.求:
(i)恰好有3次摸到紅球的概率;
(ii)設(shè)摸得紅球的次數(shù)為隨機(jī)變量X,求X的期望;
(Ⅱ)從A中摸出一個(gè)球,若是白球則繼續(xù)在袋子A中摸球,若是紅球則在袋子B中摸球,若從袋子B中摸出的是白球則繼續(xù)在袋子B中摸球,若是紅球則在袋子A中摸球,如此反復(fù)摸球3次,計(jì)摸出的紅球的次數(shù)為Y,求Y的分布列以及隨機(jī)變量Y的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(05年浙江卷理)(14分)

袋子A和B中裝有若干個(gè)均勻的紅球和白球,從A中摸出一個(gè)紅球的概率是,從B中摸出一個(gè)紅球的概率為p.

   (Ⅰ) 從A中有放回地摸球,每次摸出一個(gè),有3次摸到紅球即停止.(i)求恰好摸5次停止的概率;(ii)記5次之內(nèi)(含5次)摸到紅球的次數(shù)為,求隨機(jī)變量的分布率及數(shù)學(xué)期望E

   (Ⅱ) 若A、B兩個(gè)袋子中的球數(shù)之比為12,將A、B中的球裝在一起后,從中摸出一個(gè)紅球的概率是,求p的值.

查看答案和解析>>

同步練習(xí)冊答案