的中點(diǎn).若⊙O的另一條弦AD長等于cm.∠CAD的度數(shù)為 . 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖,AB為⊙O的直徑,其長度為2cm,點(diǎn)C為半圓弧的中點(diǎn),若⊙O的另一條弦AD長等于
3
,∠CAD的度數(shù)為
 

查看答案和解析>>

(2013•廈門質(zhì)檢)已知拋物線y=x2-2bx+c(c>0)與y軸的交點(diǎn)為A,頂點(diǎn)為M(m,n).
(1)若c=2b-1,點(diǎn)M在x軸上,求c的值.
(2)若直線y=-
12
x+t
過點(diǎn)A,且與x軸交點(diǎn)為B,直線和拋物線的另一交點(diǎn)為P,且P為線段AB的中點(diǎn).當(dāng)n取得最大值時(shí),求拋物線的解析式.

查看答案和解析>>

如圖,在平面直角坐標(biāo)系xOy中,O為原點(diǎn),點(diǎn)A、C的坐標(biāo)分別為精英家教網(wǎng)(2,0)、(1,3
3
).將△AOC繞AC的中點(diǎn)旋轉(zhuǎn)180°,點(diǎn)O落到點(diǎn)B的位置,拋物線y=ax2-2
3
x經(jīng)過點(diǎn)A,點(diǎn)D是該拋物線的頂點(diǎn).
(1)求證:四邊形ABCO是平行四邊形;
(2)求a的值并說明點(diǎn)B在拋物線上;
(3)若點(diǎn)P是線段OA上一點(diǎn),且∠APD=∠OAB,求點(diǎn)P的坐標(biāo);
(4)若點(diǎn)P是x軸上一點(diǎn),以P、A、D為頂點(diǎn)作平行四邊形,該平行四邊形的另一頂點(diǎn)在y軸上,寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

(2013•鹽城模擬)如圖(1),分別以兩個(gè)彼此相鄰的正方形OABC與CDEF的邊OC、OA所在直線為x軸、y軸建立平面直角坐標(biāo)系(O、C、F三點(diǎn)在x軸正半軸上).若⊙P過A、B、E三點(diǎn)(圓心在x軸上)交y軸于另一點(diǎn)Q,拋物線y=
14
x2+bx+c
經(jīng)過A、C兩點(diǎn),與x軸的另一交點(diǎn)為G,M是FG的中點(diǎn),B點(diǎn)坐標(biāo)為(2,2).
(1)求拋物線的函數(shù)解析式和點(diǎn)E的坐標(biāo);
(2)求證:ME是⊙P的切線;
(3)如圖(2),點(diǎn)R從正方形CDEF的頂點(diǎn)E出發(fā)以1個(gè)單位/秒的速度向點(diǎn)F運(yùn)動(dòng),同時(shí)點(diǎn)S從點(diǎn)Q出發(fā)沿y軸以5個(gè)單位/秒的速度向上運(yùn)動(dòng),連接RS,設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t<1),在運(yùn)動(dòng)過程中,正方形CDEF在直線RS下方部分的面積是否變化?若不變,說明理由并求出其值;若變化,請說明理由;

查看答案和解析>>

如圖,拋物線y=
1
2
x2+mx+n交x軸于A、B兩點(diǎn),直線y=kx+b經(jīng)過點(diǎn)A,與這條拋物線的精英家教網(wǎng)對稱軸交于點(diǎn)M(1,2),且點(diǎn)M與拋物線的頂點(diǎn)N關(guān)于x軸對稱.
(1)求這條拋物線的函數(shù)關(guān)系式;
(2)設(shè)題中的拋物線與直線的另一交點(diǎn)為C,已知P為線段AC上一點(diǎn)(不含端點(diǎn)),過點(diǎn)P作PQ⊥x軸,交拋物線于點(diǎn)Q,試證明:當(dāng)P為AC的中點(diǎn)時(shí),線段PQ的長取得最大值,并求出PQ的最大值;
(3)設(shè)D、E為直線AC上的兩點(diǎn)(不與A、C重合),且D在E的左側(cè),DE=2
2
,過點(diǎn)D作DF⊥x軸交拋物線于點(diǎn)F,過點(diǎn)E作EG⊥x軸交拋物線于點(diǎn)G.問:是否存在這樣的點(diǎn)D,使得以D、E、F、G為頂點(diǎn)的四邊形為平行四邊形?若存在,請求出所有符合條件的點(diǎn)D的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

一、1.C    2.D    3.C   4.B    5.C    6.A    7.C    8.D    9. C   10. A

二、11.  12.   13.62°    14.4    15.(n+2)2-4n=n2+4   16.25

17.5    18.15°或75°

三、19.原式=a2+a-(a2-1)            ……(3分)

        =a2+a-a2+1              ……(6分)

        =a+1                   ……(9分)

20.(1)畫圖如圖所示;         ……(4分)

(2)點(diǎn)A/的坐標(biāo)為(-2,4);  ……(7分)

(3)的長為:.        ……(10分)

21.(1)設(shè)小明他們一共去了x個(gè)成人,則去了學(xué)生(12-x)人,依題意,得

        35x+0.5×35(12-x)=350                    ………………………………(3分)

        解這個(gè)方程,得x=8                        ………………………………(5分)

        答:小明他們一共去了8個(gè)成人,去了學(xué)生4人.      ……………………(6分)

(2)若按16個(gè)游客購買團(tuán)體票,需付門票款為35×0.6×16=336(元)    ……(8分)

     ∵ 336<350,                            ………………………………(9分)

     ∴ 按16人的團(tuán)體購票更省錢.             ………………………………(10分)

22.(1)李華所在班級的總?cè)藬?shù)為:

14÷35%=40(人).     ……(3分)

        愛好書畫的人數(shù)為:

        40-14-12-4=10(人). ……(6分)

    (2)書畫部分的條形圖如圖所示.(9分)

    (3)答案不唯一.(每寫對一條給1分)如:表示“球類”的扇形圓心角為:

360×=126°愛好音樂的人數(shù)是其他愛好人數(shù)的3倍等.     …………(11分)

23.(1)由圖象可知公司從第4個(gè)月末以后開始扭虧為盈.     ………………………(2分)

   (2)由圖象可知其頂點(diǎn)坐標(biāo)為(2,-2),

故可設(shè)其函數(shù)關(guān)系式為:y=a(t-2)2-2.         ………………………………(4分)

∵ 所求函數(shù)關(guān)系式的圖象過(0,0),于是得

   a(0-2)2-2=0,解得a= .                ………………………………(5分)

        ∴ 所求函數(shù)關(guān)系式為:S=(t-2)2-2或S=t2-2t.   ………………………(7分)

   (3)把t=7代入關(guān)系式,得S=×72-2×7=10.5     ……………………………(10分)

         把t=8代入關(guān)系式,得S=×82-2×8=16

         16-10.5=5.5                              ………………………………(11分)

         答:第8個(gè)月公司所獲利是5.5萬元.        ………………………………(12分)

24.(1)∵ BC、DE分別是兩個(gè)等腰直角△ADE、△ABC的斜邊,

∴ ∠DAE=∠BAC=90°,

∴ ∠DAE-∠DAC=∠BAC-∠DAC,∴ ∠CAE=∠BAD.          ………………(2分)

        在△ACE和△ABD中,

                                    ………………………………(4分)

∴ △ACE≌△ABD(S?A?S).               ………………………………(5分)

(2)①∵ AC=AB=

∴ BC=AC2+AB2=,

        ∴ BC=4.                                  ………………………………(6分)

        ∵ AB=AC, ∠BAC=90°,

        ∴ ∠ACB=∠B=45°,

        ∵ △ACE≌△ABD

∴ ∠ACB=∠B=45°

 ∴ ∠DCE=90°.                            ………………………………(7分)

        ∵ △ACE≌△ABD,

        ∴ CE=BD=x,而BC=4,∴ DC=4-x,

        ∴ Rt△DCE的面積為DC?CE=(4-x)x.

        ∴ (4-x)x=1.5                          ………………………………(9分)

        即x2-4x+3=0.  解得x=1或x=3.            ………………………………(11分)

 ② △DCE存在最大值,理由如下:

    設(shè)△DCE的面積為y,于是得y與x的函數(shù)關(guān)系式為:

y=(4-x)x   (0<x<4)                   ………………………………(12分)

 =-(x-2)2+2

∵ a=-<0, ∴ 當(dāng)x=2時(shí),函數(shù)y有最大值2.     ……………………(13分)

      又∵ 此時(shí),x滿足關(guān)系式0<x<4,

        故當(dāng)x=2時(shí),△DCE的最大面積為2.       ………………………………(14分)

 


同步練習(xí)冊答案