設(shè)A=.B=.記A?B=max.若A=.B=.且A?B=.則的取值范圍為 . 查看更多

 

題目列表(包括答案和解析)

對a、b∈R,記,設(shè)f1(x)=|x-1|,,函數(shù)g(x)=max{f1(x),f2(x)},若方程g(x)=a有四個不同的實數(shù)解,則實數(shù)a的取值范圍是   

查看答案和解析>>

對a、b∈R,記數(shù)學(xué)公式,設(shè)f1(x)=|x-1|,數(shù)學(xué)公式,函數(shù)g(x)=max{f1(x),f2(x)},若方程g(x)=a有四個不同的實數(shù)解,則實數(shù)a的取值范圍是________.

查看答案和解析>>

max{S1,S2,…Sn}表示實數(shù)S1,S2,…Sn中的最大者.設(shè)A=(a1,a2,a3),B=
b1
b2
b3
,記A?B=max{a1b1,a2b2,a3b3}.設(shè)A=(x-1,x+1,1),B=
1
x-2
|x-1|
,若A?B=x-1,則實數(shù)x的取值范圍是
 

查看答案和解析>>

max{S1,S2,…Sn}表示實數(shù)S1,S2,…Sn中的最大者.設(shè)A=(a1,a2,a3),,記A?B=max{a1b1,a2b2,a3b3}.設(shè)A=(x-1,x+1,1),,若A?B=x-1,則實數(shù)x的取值范圍是   

查看答案和解析>>

若max{s1,s2,…,sn}表示實數(shù)s1,s2,…,sn中的最大者.設(shè)A=(a1,a2,a3),B=
b1
b2
b3
,記A?B=max{a1b1,a2b2,a3b3}.設(shè)A=(x-1,x+1,1),B=
1
x-2
|x-1|
,若A?B=x-1,則x的取值范圍為(  )

查看答案和解析>>

1.  4   2.   3.  3.   4.    5.   6.   

7.  8. 3  9.32   10.  11. 它的前項乘積為,若,則 

12.  13. [1,1+]  14.  4

15.解:(1)當(dāng)時,,

,∴上是減函數(shù).

(2)∵不等式恒成立,即不等式恒成立,

不等式恒成立. 當(dāng)時,  不恒成立;

當(dāng)時,不等式恒成立,即,∴.

當(dāng)時,不等式不恒成立. 綜上,的取值范圍是.

16.解:(1)

(2),20 

20與=3解得b=4,c=5或b=5,c= 4

(3)設(shè)D到三邊的距離分別為x、y、z,則 

 又x、y滿足

畫出不等式表示的平面區(qū)域得: 

17. (Ⅰ)證明:連結(jié),則//,   …………1分

是正方形,∴.∵,∴

,∴.    ………………4分

,∴,

.  …………………………………………5分

(Ⅱ)證明:作的中點F,連結(jié)

的中點,∴,

∴四邊形是平行四邊形,∴ . ………7分

的中點,∴,

,∴

∴四邊形是平行四邊形,//,

,,

∴平面.  …………………………………9分

平面,∴.  ………………10分

(Ⅲ). ……………………………12分

.  ……………………………15分

18.解: (1)由,得,

   則由,解得F(3,0) 設(shè)橢圓的方程為,則,解得 所以橢圓的方程為  

   (2)因為點在橢圓上運動,所以,   從而圓心到直線的距離. 所以直線與圓恒相交

     又直線被圓截得的弦長為

由于,所以,則,

即直線被圓截得的弦長的取值范圍是

19. 解:⑴g(t) 的值域為[0,]…………………5分

…………………10分

⑶當(dāng)時,+=<2;

當(dāng)時,.

所以若按給定的函數(shù)模型預(yù)測,該市目前的大氣環(huán)境綜合指數(shù)不會超標(biāo)!15分

20.解:(1)

             當(dāng)時,時,,

          

             的極小值是

     (2)要使直線對任意的


同步練習(xí)冊答案