題目列表(包括答案和解析)
設(shè)橢圓E: (a,b>0)過M(2,) ,N(,1)兩點,O為坐標(biāo)原點,
(1)求橢圓E的方程;
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程,若不存在說明理由。
【解析】本試題主要是考查了橢圓方程的求解,待定系數(shù)法求解,并且考查了圓與橢圓的位置關(guān)系的研究,利用恒有交點,聯(lián)立方程組和韋達定理一起表示向量OA,OB,并證明垂直。
設(shè)橢圓E: (a,b>0)過M(2,) ,N(,1)兩點,O為坐標(biāo)原點,
(1)求橢圓E的方程;
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程,若不存在說明理由。
【解析】本試題主要是考查了橢圓方程的求解,待定系數(shù)法求解,并且考查了圓與橢圓的位置關(guān)系的研究,利用恒有交點,聯(lián)立方程組和韋達定理一起表示向量OA,OB,并證明垂直。
設(shè)橢圓E: (a,b>0)過M(2,) ,N(,1)兩點,O為坐標(biāo)原點,
(1)求橢圓E的方程;
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程,若不存在說明理由。
【解析】本試題主要是考查了橢圓方程的求解,待定系數(shù)法求解,并且考查了圓與橢圓的位置關(guān)系的研究,利用恒有交點,聯(lián)立方程組和韋達定理一起表示向量OA,OB,并證明垂直。
如圖,設(shè)拋物線方程為直線上任意一點,過M引拋物線的切線,切點分別為A,B。
(1)求證:A,M,B三點的橫坐標(biāo)成等差數(shù)列;
(2)已知當(dāng)M點的坐標(biāo)為時,,求此時拋物線的方程;
(3)是否存在點M,使得點C關(guān)于直線AB的對稱點D在拋物線上,其中,點C滿足(O為坐標(biāo)原點).若存在,求出所有適合題意的點M的坐標(biāo);若不存在,請說明理由.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com