如圖,設(shè)拋物線方程為直線上任意一點(diǎn),過(guò)M引拋物線的切線,切點(diǎn)分別為AB。

(1)求證:A,MB三點(diǎn)的橫坐標(biāo)成等差數(shù)列;

(2)已知當(dāng)M點(diǎn)的坐標(biāo)為時(shí),,求此時(shí)拋物線的方程;

(3)是否存在點(diǎn)M,使得點(diǎn)C關(guān)于直線AB的對(duì)稱點(diǎn)D在拋物線上,其中,點(diǎn)C滿足O為坐標(biāo)原點(diǎn)).若存在,求出所有適合題意的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

 

【答案】

(1)證明:由題意設(shè)

                     由,則

                     所以

                     因此直線MA的方程為直線MB的方程為

                     所以     ①;     ②

由①-②得,而,因此

所以AM、B三點(diǎn)的橫坐標(biāo)成等差數(shù)列.

(2)解:由(1)知,當(dāng)x0=2時(shí),

                將其代入①、②并整理得:  

     所以 x1x2是方程的兩根,

                因此  又  所以

                由弦長(zhǎng)公式得:

      又, 所以p=1或p=2,

                因此所求拋物線方程為

(3)解:設(shè),由題意得

                則CD的中點(diǎn)坐標(biāo)為

               設(shè)直線AB的方程為

               由點(diǎn)Q在直線AB上,并注意到點(diǎn)也在直線AB上,

               代入得

               若在拋物線上,則

               因此 x3=0或x3=2x0.即D(0,0)或

              (1)當(dāng)x0=0時(shí),則,此時(shí),點(diǎn)M適合題意.

              (2)當(dāng),對(duì)于D(0,0),此時(shí)

                又ABCD,所以

矛盾.

對(duì)于因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052408583400007603/SYS201205240859577812614290_DA.files/image039.png">此時(shí)直線CD平行于y軸,又

所以直線AB與直線CD不垂直,與題設(shè)矛盾,

所以時(shí),不存在符合題意的M點(diǎn).

綜上所述,僅存在一點(diǎn)M適合題意.

【解析】

 

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,設(shè)拋物線方程為x2=2py(p>0),M為直線y=-2p上任意一點(diǎn),過(guò)M引拋物線的切線,切點(diǎn)分別為A,B.
(Ⅰ)求證:A,M,B三點(diǎn)的橫坐標(biāo)成等差數(shù)列;
(Ⅱ)已知當(dāng)M點(diǎn)的坐標(biāo)為(2,-2p)時(shí),|AB|=4
10
.求此時(shí)拋物線的方程;
(Ⅲ)是否存在點(diǎn)M,使得點(diǎn)C關(guān)于直線AB的對(duì)稱點(diǎn)D在拋物線x2=2py(p>0)上,其中,點(diǎn)C滿足
OC
=
OA
+
OB
(O為坐標(biāo)原點(diǎn)).若存在,求出所有適合題意的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,設(shè)拋物線方程為x2=2py(p>0),M為直線y=-2p上任意一點(diǎn),過(guò)M引拋物線的切線,切點(diǎn)分別為A,B.
(Ⅰ)求證:A,M,B三點(diǎn)的橫坐標(biāo)成等差數(shù)列;
(Ⅱ)已知當(dāng)M點(diǎn)的坐標(biāo)為(2,2p)時(shí),|AB|=4
10
,求此時(shí)拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,設(shè)拋物線方程為x2=2py(p>0),M為直線l:y=-2p上任意一點(diǎn),過(guò)M引拋物線的切線,切點(diǎn)分別為A、B.
(1)設(shè)拋物線上一點(diǎn)P到直線l的距離為d,F(xiàn)為焦點(diǎn),當(dāng)d-|PF|=
32
時(shí),求拋物線方程;
(2)若M(2,-2),求線段AB的長(zhǎng);
(3)求M到直線AB的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆河南省許昌市五校高二下學(xué)期第一次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,設(shè)拋物線方程為,為直線上任意一點(diǎn),過(guò)引拋物線的切線,切點(diǎn)分別為

(1)求證:三點(diǎn)的橫坐標(biāo)成等差數(shù)列;

(2)已知當(dāng)點(diǎn)的坐標(biāo)為時(shí),.求此時(shí)拋物線的方程。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案