(2)如果..點(diǎn)在線段上運(yùn)動(dòng). 查看更多

 

題目列表(包括答案和解析)

如圖甲,在中,為銳角,點(diǎn)為射線上一點(diǎn),連接,以為一邊且在的右側(cè)作正方形.解答下列問題:

(1)如果,
①當(dāng)點(diǎn)在線段上時(shí)(與點(diǎn)不重合),如圖乙,線段之間的位置關(guān)系為    ,數(shù)量關(guān)系為           
②當(dāng)點(diǎn)在線段的延長(zhǎng)線時(shí),如圖丙,①中的結(jié)論是否仍然成立,為什么?
(2)如果,,點(diǎn)在線段上運(yùn)動(dòng).試探究:當(dāng)滿足一個(gè)什么條件時(shí),(點(diǎn)重合除外)?畫出圖形,并說明理由.(畫圖不寫作法).

查看答案和解析>>

如圖甲,在中,為銳角,點(diǎn)為射線上一點(diǎn),連接,以為一邊且在的右側(cè)作正方形.解答下列問題:

(1)如果,,

①當(dāng)點(diǎn)在線段上時(shí)(與點(diǎn)不重合),如圖乙,線段之間的位置關(guān)系為    ,數(shù)量關(guān)系為           

②當(dāng)點(diǎn)在線段的延長(zhǎng)線時(shí),如圖丙,①中的結(jié)論是否仍然成立,為什么?

(2)如果,,點(diǎn)在線段上運(yùn)動(dòng).試探究:當(dāng)滿足一個(gè)什么條件時(shí),(點(diǎn)重合除外)?畫出圖形,并說明理由.(畫圖不寫作法).

 

查看答案和解析>>

已知:正方形的邊長(zhǎng)為1,射線與射線交于點(diǎn),射線與射線交于點(diǎn),

(1)如圖1,當(dāng)點(diǎn)在線段上時(shí),試猜想線段、有怎樣的數(shù)量關(guān)系?并證明你的猜想.
(2)設(shè),當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí)(不包括點(diǎn)、),如圖1,求關(guān)于的函數(shù)解析式,并指出的取值范圍.
(3)當(dāng)點(diǎn)在射線上運(yùn)動(dòng)時(shí)(不含端點(diǎn)),點(diǎn)在射線上運(yùn)動(dòng).試判斷以為圓心以為半徑的和以為圓心以為半徑的之間的位置關(guān)系.

(4)當(dāng)點(diǎn)延長(zhǎng)線上時(shí),設(shè)交于點(diǎn),如圖2.問△與△能否相似,若能相似,求出的值,若不可能相似,請(qǐng)說明理由.

查看答案和解析>>

(本小題滿分9分)
中,,點(diǎn)所在的直線上運(yùn)動(dòng),作按逆時(shí)針方向).
(1)如圖1,若點(diǎn)在線段上運(yùn)動(dòng),
①問△ABD與△DCE相似嗎?為什么?
②當(dāng)是等腰三角形時(shí),求的長(zhǎng).
(2)①如圖2,若點(diǎn)的延長(zhǎng)線上運(yùn)動(dòng),的反向延長(zhǎng)線與的延長(zhǎng)線相交于點(diǎn),是否存在點(diǎn),使是等腰三角形?若存在,寫出所有點(diǎn)的位置;若不存在,請(qǐng)簡(jiǎn)要說明理由;
②如圖3,若點(diǎn)的反向延長(zhǎng)線上運(yùn)動(dòng),是否存在點(diǎn),使是等腰三角形?若存在,寫出所有點(diǎn)的位置;若不存在,請(qǐng)簡(jiǎn)要說明理由.

查看答案和解析>>

如圖1,梯形中,,.一個(gè)動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度沿線段方向運(yùn)動(dòng),過點(diǎn),交折線段于點(diǎn),以為邊向右作正方形,點(diǎn)在射線上,當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),運(yùn)動(dòng)結(jié)束.設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為秒().
(1)當(dāng)正方形的邊恰好經(jīng)過點(diǎn)時(shí),求運(yùn)動(dòng)時(shí)間的值;
(2)在整個(gè)運(yùn)動(dòng)過程中,設(shè)正方形與△的重合部分面積為,請(qǐng)直接寫
之間的函數(shù)關(guān)系式和相應(yīng)的自變量的取值范圍;
(3)如圖2,當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),線段與對(duì)角線交于點(diǎn),將△ 
沿翻折,得到△,連接.是否存在這樣的 ,使△是等腰三角形?若存在,求出對(duì)應(yīng)的的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

一、填空題:

160°.

2.答案不惟一,如:AE=CF,∠AEB=∠CFD,∠ ABE=∠CDF;

3.1;

4.4。

5.60

7.2-2     

8.15。

9.5

10.4

11.5

12. 2,3,n。

14.

 

15. (-8,0)。

 

16.6。

17. .平行四邊形。

18.60

19.4,12           

二、選擇題:

1.C

 

2.C

3.B

4.B

 

5.B

6.A

 

7.C。

 

8.B。

 

9.C

 

10.D

 

 

11.C。

 

12.B

13.B 

14.C 

15.D

16. C

17.C   

18.D    

19.D

20.C

21.D

22.D。

三、解答題:

11如圖答2,因?yàn)锳D∥BC,AB∥DC  ------------------------------------------------- 2分

所以四邊形ABCD為平行四邊形.---------------------------------------------------------------- 3分

分別過點(diǎn)B、D作BF⊥AD,DE⊥AB,垂足分別為點(diǎn)E、F.

則BE = CF.-------------------------------------------------------------------------------------------- 4分

因?yàn)椤螪AB =∠BAF,所以Rt△DAB≌Rt△BAF.--------------------------------------------- 5分

所以AD = AB.            

所以四邊形ABCD為菱形.-------------------------------------------------------------------------- 6分

(2存在最小值和最大值.-------------------------------------------------------------------------- 7分

① 當(dāng)∠DAB = 90°時(shí),菱形ABCD為正方形,周長(zhǎng)最小值為8;---------------------------8分

② 當(dāng)AC為矩形紙片的對(duì)角線時(shí),設(shè)AB = x,如圖答3,在Rt△BCG中,

,.所以周長(zhǎng)最大值為17.-------------------------------------------9分

          

 

 

                                                                                                 

 

 

 

 

 

 

 

 

  2.證明:  ∵EF垂直平分AC,∴EF⊥AC,且AO=CO-------------------------------1′       

              證得:△AOE≌△COF-----------------------------------------------------------3′

          證得:四邊形AECF是平行四邊形------------------------------------------------5′

       由AC⊥EF可知:四邊形AECF是菱形 -------------------------------------------6′

 

 

5.(本題滿分8分)

解:(1)方法一:如圖①

∵在 ABCD中,ADBC

∴∠DAB+∠ABC=180°                  ………………………1分

AE、BF分別平分∠DAB和∠ABC

∴∠DAB=2∠BAE,∠ABC=2∠ABF              ………………………2分

∴2∠BAE+2∠ABF=180°

即∠BAE+∠ABF=90°                 ………………………3分

∴∠AMB=90°

AEBF                                     …………………………4分

        圖②

         

         

         

         

         

         

        方法二:如圖②,延長(zhǎng)BC、AE相交于點(diǎn)P     

        ∵在ABCD中,AD∥BC

        ∴∠DAP=∠APB                                               …………………………1分

        ∵AE平分∠DAB

        ∴∠DAP=∠PAB                                               …………………………2分

        ∴∠APB=∠PAB

        ∴AB=BP                                                                   ………………………3分

        ∵BF平分∠ABP

        ∴:AP⊥BF

        即AE⊥BF.                                                            ………………………4分

        (2)方法一:線段DFCE是相等關(guān)系,即DF=CE     ………………5分

        ∵在ABCD中,CDAB

        ∴∠DEA=∠EAB

        又∵AE平分∠DAB

        ∴∠DAE=∠EAB

        ∴∠DEA=∠DAE

        DEAD                                         ………………………6分

        同理可得,CFBC                               ………………………7分

        又∵在ABCD中,ADBC

        DECF

        DEEFCFEF

        DFCE.                                         ………………………8分

        方法二:如右圖,延長(zhǎng)BC、AE設(shè)交于點(diǎn)P,延長(zhǎng)AD、BF相交于點(diǎn)O       …5分

        ∵在ABCD中,AD∥BC

        ∴∠DAP=∠APB                                                   

        ∵AE平分∠DAB

        ∴∠DAP=∠PAB                                                  

        ∴∠APB=∠PAB

        ∴BP=AB

        同理可得,AO=AB                 

            ∴AO=BP                                   ………………………6分

                ∵在ABCD中,AD=BC

                ∴OD=PC

         又∵在ABCD中,DC∥AB

               ∴△ODF∽△OAB,△PCE∽△PBA                  ………………………7分

               ∴,

               ∴DF=CE.                                                                     ………………………8分

         

        6. (1)(2)略  。3)設(shè)BC=x,則DC=x  ,BD=,CF=(-1)x

        GD2=GE?GB=4-2      DC2+CF2=(2GD)2   即 x2+(-1)2x2=4(4-2

        (4-2)x2=4(4-2)    x2=4   正方形ABCD的面積是4個(gè)平方單位

         

         

        7.(本小題滿分5分)

        證明:∵  AB∥CD

        ∴                …………1分

        ∵ 

        ∴  △ABO≌△CDO                 …………3分

        ∴                      …………4分

        ∴  四邊形ABCD是平行四邊形       …………5分

         

         

         

         

         

        11.證明:(1)①在中,

        ,,,????????????????????????????????????????????????????????????????????????? 2分

        .????????????????????????????????????????????????????????????????????????????????????????????????? 3分

        ,

        .?????????????????????????????????????????????????????????????????????????????????????????????????? 4分

        ,

         

        12.(本題7分)

        解:(1)在梯形中,,

        ,

        ,

        ,

        ,

        .?????????????????????????????????????????????????????????????????????????????????????????????????? 2分

        .???????????????????????????????????????????????????????????????????????????????????????????????????????????? 3分

        ,,

        .?????????????????????????????????????????????????????????????????????????????????????????????????????????????? 4分

        的函數(shù)表達(dá)式是

        ;??????????????????????????????????????????????????????????????????????????????????????? 5分

        (2)

        .?????????????????????????????????????????????????????????????????????????????????????????????????????? 6分

        當(dāng)時(shí),有最大值,最大值為.??????????????????????????????????????????????????????????????????? 7分

         

         

         

        13.證明:菱形中,.???????????????????? 1分

        分別是的中點(diǎn),

        .?????????????????? 3分

        ,.????????????????? 5分

        .??????????????????????????????? 7分

        14.

        15.證明:四邊形是平行四邊形,

        .??????????????????????????????????????????????????????????????????????????????????????????????????? 1分

        平分,.????????????????????????????????????????????????????????????????? 2分

        .??????????????????????????????????????????????????????????????????????????????????????????????????? 3分

        .??????????????????????????????????????????????????????????????????????????????????????????????????????????????? 4分

        ,.???????????????????????????????????????????????????????????????????????????????????? 5分

         

        16.解:(1)①40.?????????????????????????????????????????????????????????????????????????????????????????????????????? 2分

        ②0. ??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 4分

        (2)不合理.例如,對(duì)兩個(gè)相似而不全等的矩形來說,它們接近正方形的程度是相同的,但卻不相等.合理定義方法不唯一,如定義為越小,矩形越接近于正方形;越大,矩形與正方形的形狀差異越大;當(dāng)時(shí),矩形就變成了正方形.???????????????????????????????????????????????????????????????????????????????????????????????????????????????? 6分

        17.解:(1)正方形中,,

        ,因此,即菱形的邊長(zhǎng)為

        中,,

        ,

        ,

        ,即菱形是正方形.

        同理可以證明

        因此,即點(diǎn)邊上,同時(shí)可得,

        從而.????????????????????????????????????????????????????????????????????????????????????????? 2分

        (2)作為垂足,連結(jié)

        ,

        ,

        中,,,

        ,即無論菱形如何變化,點(diǎn)到直線的距離始終為定值2.

        因此.??????????????????????????????????????????????????????????????????????????? 6分

        (3)若,由,得,此時(shí),在中,

        相應(yīng)地,在中,,即點(diǎn)已經(jīng)不在邊上.

        故不可能有.???????????????????????????????????????????????????????????????????????????????????????????????? 9分

        另法:由于點(diǎn)在邊上,因此菱形的邊長(zhǎng)至少為,

        當(dāng)菱形的邊長(zhǎng)為4時(shí),點(diǎn)邊上且滿足,此時(shí),當(dāng)點(diǎn)逐漸向右運(yùn)動(dòng)至點(diǎn)時(shí),的長(zhǎng)(即菱形的邊長(zhǎng))將逐漸變大,最大值為

        此時(shí),,故

        而函數(shù)的值隨著的增大而減小,

        因此,當(dāng)時(shí),取得最小值為

        又因?yàn)?sub>,所以,的面積不可能等于1.????????????????????? 9分

        18.

        19.證明:在等腰中,,

             ,,.又,

             .????????????????????????????????????????????????????????????????????????? 3分

             

             .?????????????????? 5分

             又不平行,四邊形是梯形.??????????????????????????????????? 7分

             四邊形是等腰梯形.(理由:同一底上的兩底角相等的梯形是等腰梯形,或兩腰相等的梯形是等腰梯形)?????????????????????????????????????????????????????????????????????????????????????????????????????? 8分

         

        20.解:(1)在矩形中,,

        .……………………1分

            ,

            ,即,

        同步練習(xí)冊(cè)答案