(本小題滿分9分)
中,,點所在的直線上運動,作按逆時針方向).
(1)如圖1,若點在線段上運動,
①問△ABD與△DCE相似嗎?為什么?
②當(dāng)是等腰三角形時,求的長.
(2)①如圖2,若點的延長線上運動,的反向延長線與的延長線相交于點,是否存在點,使是等腰三角形?若存在,寫出所有點的位置;若不存在,請簡要說明理由;
②如圖3,若點的反向延長線上運動,是否存在點,使是等腰三角形?若存在,寫出所有點的位置;若不存在,請簡要說明理由.

①證明:……………………………………………………1分
理由是:在中,∵
∴∠B=∠C=45°又 ∠ADE=45°

………………2分

 
∴∠ADB+∠EBC=∠EBC+∠DEC=135°

………………3分

 
∴∠ADB=∠DEC    

         
② 當(dāng)是等腰三角形時,分以下三種情況討論
第一種情況:DE=AE
∵DE=AE
∴∠ADE=∠DAE=45°

………………4分

 
∴ ∠AED=90°, 此時,E為AC的中點,

∴AE=AC=1.
第二種情況:AD=AE(D與B重合)
AE=2………………………………………………………………………………5分
第三種情況 :AD=AE
如果AD=DE,由于,
∴ △ABD≌△DCE,
∴BD=CE,AB=DC,設(shè)BD=CE= 
中,∵,
∴ BC=, DC=
="2" ,解得,=-2 ,
∴ AE=" 4" -2……………………………………………………………6分
綜上所述:AE的值是1,2,4 -2
(2)①存在。

………………7分

 
當(dāng)D在BC的延長線上,且CD=CA時,是等腰三角形.

證明:∵∠ADE=45°=∠ACB=∠DCE′,
∴ ∠ADC+∠EDC=∠EDC+∠DEC=135°,
∴ ∠ADC=∠DEC,又CD="CA" ,
∴ ∠CAD=∠CDA ,
∴ ∠CAD=∠CED ,
∴DA=DE′,

………………8分

 
是等腰三角形.

②不存在.
因為∠ACD=45°>∠E , ∠ADE=45°

………………9分

 
∴∠ADE≠∠E

不可能是等腰三角形。

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本小題滿分5分)在△ABC中,AB=AC,∠BAC=120°,過點C作CD∥AB,且CD=2AB,聯(lián)結(jié)BD,BD=2.求△ABC的面積.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年廣東省蘿崗區(qū)初中畢業(yè)班綜合測試數(shù)學(xué)卷 題型:解答題

(本小題滿分14分)
在如圖所示的一張矩形紙片)中,將紙片折疊一次,使點重合,再展開,折痕邊于,交邊于,分別連結(jié)

【小題1】(1)求證:四邊形是菱形;
【小題2】(2)過,求證:
【小題3】(3)若,的面積為,求的周長;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年河北省衡水市五校九年級第三次聯(lián)考數(shù)學(xué)卷 題型:解答題

(本小題滿分8分)在直角坐標(biāo)系中,已知點A(-2,0)、B(0,4)、C(0,3),過點C作直線交x軸于點D,使得以    D、O、C為頂點的三角形與△AOB相似,求點D的坐標(biāo)。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年安徽省蕪湖市九年級模擬試題數(shù)學(xué)卷 題型:解答題

(本小題滿分9分)在一個不透明的箱子中裝有三個大小相同、材質(zhì)相同的小球,分別標(biāo)有數(shù)字1, 2, 3.現(xiàn)從中隨機(jī)地摸出一個小球,把該球上所標(biāo)注的數(shù)字記為x后,放回原箱子;再從箱子中又隨機(jī)地摸出一個小球,把該球上所標(biāo)注的數(shù)字記為y.以先后記下的兩個數(shù)字(x,y)作為點M的坐標(biāo).

(1)求點M的橫坐標(biāo)與縱坐標(biāo)的和為4的概率;

(2)在平面直角坐標(biāo)系中,試求點M落在以坐標(biāo)原點為圓心,以為半徑的圓的內(nèi)部的概率.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(貴州安順卷)數(shù)學(xué) 題型:解答題

(11·西寧)(本小題滿分12分)在平面直角坐標(biāo)系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標(biāo)軸上,點C為 (-1,0) .如圖17所示,B點在拋物線圖象上,過點BBDx軸,垂足為D,且B點橫坐標(biāo)為-3.

(1)求證:△BDC≌△COA;

(2)求BC所在直線的函數(shù)關(guān)系式;

(3)拋物線的對稱軸上是否存在點P,使△ACP是以AC為直角邊的直角三角形?若存在,求出所有點P的坐標(biāo);若不存在,請說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案