袋中裝有黑球和白球共7個,從中任取2個球都是白球的概率為現(xiàn)有甲.乙兩人從袋中輪流摸取1球.甲先取.乙后取.然后甲再取--取球后不放回.直到兩人中有一人取到白球時終止.每個球在每一次被取出的機會是等可能的.用表示取球終止所需要的取球次數(shù).(I)求袋中所有的白球的個數(shù), 查看更多

 

題目列表(包括答案和解析)

.袋中裝有黑球和白球共7個,從中任取2個球都是白球的概率是,現(xiàn)在甲乙兩人輪流從袋中摸出一球,甲先取,乙后取,然后甲再取…取后不放回,直到兩人中有一人取到白球時即終止,每個球每一次被取到的機會是均等的,那么甲取到白球的概率是    (    )

A.           B.           C.                 D.

 

查看答案和解析>>

袋中裝有黑球和白球共7個,從中任取2個球都是白球的概率為現(xiàn)有甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到兩人中有一人取到白球時既終止,每個球在每一次被取出的機會是等可能的,用表示取球終止所需要的取球次數(shù).

(I)求袋中所有的白球的個數(shù);

(II)求隨機變量的概率分布;

(III)求甲取到白球的概率.

查看答案和解析>>

袋中裝有黑球和白球共7個,從中任取2個球都是白球的概率為現(xiàn)有甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取……取球后不放回,直到兩人中有一人取到白球時終止,每個球在每一次被取出的機會是等可能的,用表示取球終止所需要的取球次數(shù).

(I)求袋中所有的白球的個數(shù);

(II)求隨機變量的概率分布;

(III)求甲取到白球的概率.

查看答案和解析>>

袋中裝有黑球和白球共7個,從中任取2個球都是白球的概率為,現(xiàn)有甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到兩人中有一人取到白球時即終止,每個球在每一次被取出的機會是等可能的,用X表示取球終止所需要的取球次數(shù).

(1)求袋中所有的白球的個數(shù);

(2)求隨機變量X的概率分布;

(3)求甲取到白球的概率.

查看答案和解析>>

袋中裝有黑球和白球共7個,從中任取2個球都是白球的概率為,現(xiàn)有甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到兩人中有一人取到白球時既終止,每個球在每一次被取出的機會是等可能的,用 ξ表示取球終止所需要的取球次數(shù).

(1)求袋中所有的白球的個數(shù);

(2)求隨機變量ξ的概率分布;

(3)求甲取到白球的概率.

查看答案和解析>>

一.選擇題:

題號

1

2

3

4

5

6

7

8

答案

C

A

C

B

B

A

B

D

二.填空題:

9.6、30、10;                 10.?5;               11.

12.?250;                     13.;              14.③④

三.解答題:

15.解: ;  ………5分

方程有非正實數(shù)根

 

綜上: ……………………12分16.解:(I)設袋中原有個白球,由題意知

可得(舍去)

答:袋中原有3個白球. 。。。。。。。。4分

(II)由題意,的可能取值為1,2,3,4,5

 

所以的分布列為:

1

2

3

4

5

。。。。。。。。。9分

(III)因為甲先取,所以甲只有可能在第一次,第三次和第5次取球,記”甲取到白球”為事件,則

答:甲取到白球的概率為.。。。。。。。。13分

17.解:(1)由.,∴=1;。。。。。。。。。4分

(2)任取∈(1,+∞),且設,則:

>0,

在(1,+∞)上是單調遞減函數(shù);。。。。。。。。。8分

(3)當直線∈R)與的圖象無公共點時,=1,

<2+=4=,|-2|+>2,

得:.。。。。。。。。13分

18.(Ⅰ)證明:∵底面,底面, ∴

   又∵平面,平面,,

    ∴平面;3分

(Ⅱ)解:∵點分別是的中點,

,由(Ⅰ)知平面,

平面

,,

為二面角的平面角,

底面,∴與底面所成的角即為,

,∵為直角三角形斜邊的中點,

為等腰三角形,且,∴;

(Ⅲ)過點于點,∵底面,

   ∴底面,為直線在底面上的射影,

   要,由三垂線定理的逆定理有要 ,

 設,則由

 又∴在直角三角形中,,

,

∵ ,,

在直角三角形中,

 ,即時,

(Ⅲ)以點為坐標原點,建立如圖的直角坐標系,設,則,,設,則

,,

,時時,.

 

 

19  證明:(1)對任意x1, x2∈R, 當 a0,

=                         =……(3分)

∴當時,,即

  當時,函數(shù)f(x)是凸函數(shù).   ……(4分)

 (2) 當x=0時, 對于a∈R,有f(x)≤1恒成立;當x∈(0, 1]時, 要f(x)≤1恒成立

, ∴ 恒成立,∵ x∈(0, 1], ∴ ≥1, 當=1時, 取到最小值為0,∴ a≤0, 又a≠0,∴ a的取值范圍是.

由此可知,滿足條件的實數(shù)a的取值恒為負數(shù),由(1)可知函數(shù)f(x)是凸函數(shù)………10分

(3)令,∵,∴,……………..(11)分

,則,故;

,則

;,……………..(12)分

,則;∴時,.

綜上所述,對任意的,都有;……………..(13)分

所以,不是R上的凸函數(shù). ……………..(14)分

對任意,有

所以,不是上的凸函數(shù). ……………..(14)分

20. 解:(1)設數(shù)列的前項和為,則

……….4分

(2)為偶數(shù)時,

為奇數(shù)時,

………9分

(3)方法1、因為所以

,時,,

又由,兩式相減得

 所以若,則有………..14分

方法2、由,兩式相減得

………..11分

所以要證明,只要證明

或①由:

所以…………………14分

或②由:

…………………14分

數(shù)學歸納法:①當

②當

綜上①②知若,則有.

所以,若,則有.。。。。。。。。。14分

 

 


同步練習冊答案