已知橢圓的左右焦點(diǎn)分別為F1. F2,點(diǎn)P在橢圓上, △F1P F2為直角三角形,則點(diǎn)P的個(gè)數(shù)可能是A.4個(gè)或6個(gè) B. 4個(gè)或8個(gè) C.6個(gè)或8個(gè) D. 4個(gè)或6個(gè)或8個(gè) 查看更多

 

題目列表(包括答案和解析)

已知橢圓(a>b>0)的左右頂點(diǎn)為A1,A2,上下頂點(diǎn)為B1,B2,左右焦點(diǎn)為F1,F(xiàn)2,若△F1B1F2為等腰直角三角形
(1)求橢圓的離心率;
(2)若△A1B1A2的面積為6,求橢圓的方程.

查看答案和解析>>

已知橢圓數(shù)學(xué)公式(a>b>0)的左右頂點(diǎn)為A1,A2,上下頂點(diǎn)為B1,B2,左右焦點(diǎn)為F1,F(xiàn)2,若△F1B1F2為等腰直角三角形
(1)求橢圓的離心率;
(2)若△A1B1A2的面積為6數(shù)學(xué)公式,求橢圓的方程.

查看答案和解析>>

已知橢圓(a>b>0)的左右焦點(diǎn)分別為F1,F2,P是橢圓上一點(diǎn)。PF1F2為以F2P為底邊的等腰三角形,當(dāng)60°<∠PF1F2<120°,則該橢圓的離心率的取值范圍是(    )。

查看答案和解析>>

已知橢圓(a>b>0)的兩個(gè)焦點(diǎn)分別為F1(-c,0)和F2(c,0)(c>0),過點(diǎn)E(,0)的直線與橢圓相交于A、B兩點(diǎn),且F1A∥F2B,|F1A|=2|F2B|.
(1)求橢圓的離心率;
(2)求直線AB的斜率;
(3)設(shè)點(diǎn)C與點(diǎn)A關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,直線F2B上有一點(diǎn)H(m,n)(m≠0)在△AF1C的外接圓上,求的值。

查看答案和解析>>

(本小題滿分13分)

已知橢圓(a>b>0)的離心率 

該橢圓上一點(diǎn),

(I)求橢圓的方程.

(II)過點(diǎn)作直線與橢圓相交于點(diǎn),若以為直徑的圓經(jīng)原點(diǎn),求直線的方程

 

查看答案和解析>>

一、1. A  2.B  3.B  4.C  5.A  6.D  7.A  8.C  9.B  10.A  11.D  12.D

二、13.1   14.1   15.r≥6   16.81

三、

18. (1)設(shè) A為 “甲預(yù)報(bào)站預(yù)報(bào)準(zhǔn)確”B為“乙預(yù)報(bào)站預(yù)報(bào)準(zhǔn)確”則在同一時(shí)間段里至少      

  有一個(gè)預(yù)報(bào)準(zhǔn)確的概率為-------4分

(2)①的分布列為

0

1

2

3

p

0.008

0.096

0.384

0.512

②由上的值恒為正值得

---12分

19. 解法一

(1)證明:連AC交DB于點(diǎn)O,

由正四棱柱性質(zhì)可知AA1⊥底面ABCD,AC⊥BD,∴A1C⊥BD,

又∵A1B1⊥側(cè)面BC1且BC1⊥BE  ∴A1C⊥BE,

又∵BD∩BE=B,∴A1C⊥平面BDE.

(2)設(shè)A1C交平面BDE于點(diǎn)K,連結(jié)BK,則∠A1BK為A1B與平面BDE所成的角

在側(cè)面BC1中,BE⊥B1C∴ㄓBCE∽ㄓB1BC

      又BC=2,BB1=4,∴CE=1.

連OE,則OE為平面ACC1A1與平面BDE的交線,∴OE∩A1C=K

在RtㄓECO中,,∴

     ∵

,∴在RtㄓA1BK中,,即為A1B與平面BDE所成的角的正弦值.

解法二:

(1)       以D為原點(diǎn),DA、DC、DD1所在的直線分別為x,y,z軸建立空間直角坐標(biāo)系

D(0,0,0), A(2,0,0),B(2,2,0),C(0,2,0)

A1(2,0,4),B1(2,2,4),C1(0,2,4),D1(0,0,4),設(shè)點(diǎn)E(0,2,t)

∵BE⊥B1C,∴   ,∴E(0,2,1)

,,

∴A1C⊥DB,且A1C⊥BE,∴A1C⊥平面BDE.

(2)設(shè)A1C∩平面BDE=K

,…………①

同理有

…②

由①②聯(lián)立,解得    ∴

,又易知

,即所求角的正弦值為

20.解:(1)易得

(2)設(shè)P的圖像上任一點(diǎn),點(diǎn)P關(guān)于直線的對(duì)稱點(diǎn)為

∵點(diǎn)的圖像上,

,即得

(3)

                  下面求的最小值:

①當(dāng),即時(shí)

,得,所以

②當(dāng)時(shí)在R上是增函數(shù),無(wú)最小值,與不符.

③當(dāng)時(shí),在R上是減函數(shù),無(wú)最小值,與不符.

④當(dāng)時(shí),,與最小值不符.

綜上所述,所求的取值范圍是

21.(1)解:設(shè)P(a,0),Q(0,b)則:  ∴

設(shè)M(x,y)∵   ∴         ∴
(2)解法一:設(shè)A(a,b),,x1x2

則直線SR的方程為:,即4y = (x1+x2)xx1x2

∵A點(diǎn)在SR上,∴4b=(x1+x2)ax1x2  ①  對(duì)求導(dǎo)得:y′=x

∴拋物線上S.R處的切線方程為

即4    ②

即4  ③

聯(lián)立②、③得  

代入①得:ax-2y-2b=0故:B點(diǎn)在直線ax-2y-2b=0上.

解法二:設(shè)A(a,b),當(dāng)過點(diǎn)A的直線斜率不存在時(shí)l與拋物線有且僅有一個(gè)公共點(diǎn),與題意不符,可設(shè)直線SR的方程為yb=k(xa).

聯(lián)立消去y,得x2-4kx+4ak-4b=0.設(shè)x1x2

則由韋達(dá)定理,得

又過S、R點(diǎn)的切線方程分別為,. 

聯(lián)立,并解之,得k為參數(shù))   消去k,得ax-2y-2b=0.

故B點(diǎn)在直線2axyb=0上.

22.解:(1)=22;

(3)由(2)知

=

 


同步練習(xí)冊(cè)答案