★已知數(shù)列{an}.{bn}都是無窮等差數(shù)列,其中a1=3,b1=2,b2是a2與a3的等差中項,且.求極限的值. 分析 首先需求出an.bn的表達(dá)式,以確定所求極限的表達(dá)式,為此,關(guān)鍵在于求出兩個數(shù)列的公差,“b2是a2與a3的等差中項 已給出一個等量關(guān)系,“an與bn之比的極限為 又給出了另一個等量關(guān)系,故可考慮先設(shè)出公差用二元方程組求解. 解 設(shè){an}.{bn}的公差分別為d1.d2, ∵2b2=a2+a3,即2(2+d2)=(3+d1)+(3+2d1), ∴2d2-3d1=2.① 2分 又 即d2=2d1,② 4分 聯(lián)立①②解得d1=2,d2=4. ∴an=a1+(n-1)d1=3+(n-1)·2=2n+1, bn=b1+(n-1)d2=2+(n-1)·4=4n-2. 6分 10分 查看更多

 

題目列表(包括答案和解析)

若數(shù)列{an}滿足an+2+pan+1+qan=0(其中p2+q2≠0,且p、q為常數(shù))對任意n∈N*都成立,則我們把數(shù)列{an}稱為“L型數(shù)列”.
(1)試問等差數(shù)列{an}、等比數(shù)列{bn}(公比為r)是否為L型數(shù)列?若是,寫出對應(yīng)p、q的值;若不是,說明理由.
(2)已知L型數(shù)列{an}滿足an+1+pan+qan-1=0(n≥2,n∈N*,p2-4q>0,q≠0),x1、x2是方程x2+px+q=0的兩根,若b-axi≠0(i=1,2),求證:數(shù)列{an+1-xian}(i=1,2,n∈N*)是等比數(shù)列(只選其中之一加以證明即可).
(3)請你提出一個關(guān)于L型數(shù)列的問題,并加以解決.(本小題將根據(jù)所提問題的普適性給予不同的分值,最高10分)

查看答案和解析>>

(2009•黃浦區(qū)二模)若數(shù)列{an}滿足an+2+pan+1+qan=0(其中p2+q2≠0,且p、q為常數(shù))對任意n∈N*都成立,則我們把數(shù)列{an}稱為“L型數(shù)列”.
(1)試問等差數(shù)列{an}、等比數(shù)列{bn}(公比為r)是否為L型數(shù)列?若是,寫出對應(yīng)p、q的值;若不是,說明理由.
(2)已知L型數(shù)列{an}滿足an+1+pan+qan-1=0(n≥2,n∈N*,p2-4q>0,q≠0),x1、x2是方程x2+px+q=0的兩根,若b-axi≠0(i=1,2),求證:數(shù)列{an+1-xian}(i=1,2,n∈N*)是等比數(shù)列(只選其中之一加以證明即可).
(3)請你提出一個關(guān)于L型數(shù)列的問題,并加以解決.(本小題將根據(jù)所提問題的普適性給予不同的分值,最高10分)

查看答案和解析>>

必做題:(本小題滿分10分,請在答題指定區(qū)域內(nèi)作答,解答時應(yīng)寫出文字說明、證明過程或演算步驟)
已知an(n∈N*)是二項式(2+x)n的展開式中x的一次項的系數(shù).
(Ⅰ)求an;
(Ⅱ)是否存在等差數(shù)列{bn},使an=b1cn1+b2cn2+b3cn3+…+bncnn對一切正整數(shù)n都成立?并證明你的結(jié)論.

查看答案和解析>>

必做題:(本小題滿分10分,請在答題指定區(qū)域內(nèi)作答,解答時應(yīng)寫出文字說明、證明過程或演算步驟)
已知an(n∈N*)是二項式(2+x)n的展開式中x的一次項的系數(shù).
(Ⅰ)求an;
(Ⅱ)是否存在等差數(shù)列{bn},使an=b1cn1+b2cn2+b3cn3+…+bncnn對一切正整數(shù)n都成立?并證明你的結(jié)論.

查看答案和解析>>

必做題:(本小題滿分10分,請在答題指定區(qū)域內(nèi)作答,解答時應(yīng)寫出文字說明、證明過程或演算步驟)
已知an(n∈N*)是二項式(2+x)n的展開式中x的一次項的系數(shù).
(Ⅰ)求an;
(Ⅱ)是否存在等差數(shù)列{bn},使an=b1cn1+b2cn2+b3cn3+…+bncnn對一切正整數(shù)n都成立?并證明你的結(jié)論.

查看答案和解析>>


同步練習(xí)冊答案