科目: 來源: 題型:
【題目】已知函數(shù),其中.
(1)若曲線在點處的切線與直線平行,求與滿足的關系;
(2)當時,討論的單調(diào)性;
(3)當時,對任意的,總有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的離心率為,左、右焦點分別是,橢圓上短軸的一個端點與兩個焦點構成的三角形的面積為;
(1)求橢圓的方程;
(2)過作垂直于軸的直線交橢圓于兩點(點在第二象限),是橢圓上位于直線兩側的動點,若,求證:直線的斜率為定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標系中,傾斜角為的直線的參數(shù)方程為(為參數(shù)).在以坐標原點為極點,軸正半軸為極軸的極坐標系中,曲線的極坐標方程為.
(1)求直線的普通方程與曲線的直角坐標方程;
(2)若直線與曲線交于,兩點,且,求直線的傾斜角.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓,橢圓以的長軸為短軸,且兩個橢圓的離心率相同,設O為坐標原點,點A、B分別在橢圓、上,若,則直線AB的斜率k為( ).
A.1B.-1C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】1852年,英國來華傳教士偉烈亞力將《孫子算經(jīng)》中“物不知數(shù)”問題的解法傳至歐洲.1874年,英國數(shù)學家馬西森指出此法符合1801年由高斯得到的關于同余式解法的一般性定理,因而西方稱之為“中國剩余定理”.“中國剩余定理”講的是一個關于整除的問題,例如求1到2000這2000個整數(shù)中,能被3除余1且被7除余1的數(shù)的個數(shù),現(xiàn)由程序框圖,其中MOD函數(shù)是一個求余函數(shù),記表示m除以n的余數(shù),例如,則輸出i為( ).
A.98B.97C.96D.95
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標系中,曲線C的參數(shù)方程為(為參數(shù)),直線的斜率為1,在軸上的截距為2
(1)在直角坐標系中以O為極點,軸的正半軸為極軸建立極坐標系,點M的極坐標為,判斷點M與直線的位置關系;
(2)設點A是曲線C上的任意點,求它到直線的距離的最大值
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),是的一個極值點
(1)求實數(shù)的值,并證明:當時,恒成立;
(2)若函數(shù),試討論函數(shù)的零點個數(shù)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的右焦點為F,點B是橢圓C的短軸的一個端點,ΔOFB的面積為,橢圓C上的兩點H、G關于原點O對稱,且、的等差中項為2
(1)求橢圓的方程;
(2)是否存在過點M(2,1)的直線與橢圓C交于不同的兩點P、Q,且使得成立?若存在,試求出直線的方程;若不存在,請說明理由
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在等腰梯形ABCD中,AB//CD,∠ABC=,BC=CD=CE=1,EC⊥平面ABCD,EFAC,P是線段EF上的動點
(1)求證:平面BCE⊥平面ACEF;
(2)求平面PAB與平面BCE所成銳二面角的最小值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com