科目: 來源: 題型:
【題目】過軸正半軸上一點做直線與拋物線交于,,兩點,且滿足,過定點與點做直線與拋物線交于另一點,過點與點做直線與拋物線交于另一點.設(shè)三角形的面積為,三角形的面積為.
(1)求正實數(shù)的取值范圍;
(2)連接,兩點,設(shè)直線的斜率為;
(。┊時,直線在軸的縱截距范圍為,則求的取值范圍;
(ⅱ)當實數(shù)在(1)取到的范圍內(nèi)取值時,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)討論在定義域內(nèi)的極值點的個數(shù);
(2)若對,恒成立,求實數(shù)的取值范圍;
(3)證明:若,不等式成立.
查看答案和解析>>
科目: 來源: 題型:
【題目】哈三中總務(wù)處的老師要購買學(xué)校教學(xué)用的粉筆,并且有非常明確的判斷一盒粉筆是“優(yōu)質(zhì)產(chǎn)品”和“非優(yōu)質(zhì)產(chǎn)品”的方法.某品牌的粉筆整箱出售,每箱共有20盒,根據(jù)以往的經(jīng)驗,其中會有某些盒的粉筆為非優(yōu)質(zhì)產(chǎn)品,其余的都為優(yōu)質(zhì)產(chǎn)品.并且每箱含有0,1,2盒非優(yōu)質(zhì)產(chǎn)品粉筆的概率為0.7,0.2和0.1.為了購買該品牌的粉筆,?倓(wù)主任設(shè)計了一種購買的方案:欲買一箱粉筆,隨機查看該箱的4盒粉筆,如果沒有非優(yōu)質(zhì)產(chǎn)品,則購買,否則不購買.設(shè)“買下所查看的一箱粉筆”為事件,“箱中有件非優(yōu)質(zhì)產(chǎn)品”為事件.
(1)求,,;
(2)隨機查看該品牌粉筆某一箱中的四盒,設(shè)為非優(yōu)質(zhì)產(chǎn)品的盒數(shù),求的分布列及期望;
(3)若購買100箱該品牌粉筆,如果按照主任所設(shè)計方案購買的粉筆中,箱中每盒粉筆都是優(yōu)質(zhì)產(chǎn)品的箱數(shù)的期望比隨機購買的箱中每盒粉筆都是優(yōu)質(zhì)產(chǎn)品的箱數(shù)的期望大10,則所設(shè)計的方案有效.討論該方案是否有效.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標系中,曲線,曲線(為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸建立極坐標系.
(1)求的極坐標方程;
(2)射線的極坐標方程為,若分別與交于異于極點的兩點,求的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某科研團隊對例新冠肺炎確診患者的臨床特征進行了回顧性分析.其中名吸煙患者中,重癥人數(shù)為人,重癥比例約為;名非吸煙患者中,重癥人數(shù)為人,重癥比例為.
(1)根據(jù)以上數(shù)據(jù)完成列聯(lián)表;
(2)根據(jù)(1)中列聯(lián)表數(shù)據(jù),能否在犯錯誤的概率不超過的前提下認為新冠肺炎重癥與吸煙有關(guān)?
(3)已知每例重癥患者平均治療費用約為萬元,每例輕癥患者平均治療費用約為萬元.根據(jù)(1)中列聯(lián)表數(shù)據(jù),分別求吸煙患者和非吸煙患者的平均治療費用.(結(jié)果保留兩位小數(shù))
附:
≥ | |||
查看答案和解析>>
科目: 來源: 題型:
【題目】某商場推出消費抽現(xiàn)金活動,顧客消費滿1000元可以參與一次抽獎,該活動設(shè)置了一等獎、二等獎、三等獎以及參與獎,獎金分別為:一等獎200元、二等獎100元、三等獎50元、參與獎20元,具體獲獎人數(shù)比例分配如圖,則下列說法中錯誤的是( )
A.獲得參與獎的人數(shù)最多
B.各個獎項中一等獎的總金額最高
C.二等獎獲獎人數(shù)是一等獎獲獎人數(shù)的兩倍
D.獎金平均數(shù)為元
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標系中,曲線,曲線(為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸建立極坐標系.
(1)求的極坐標方程;
(2)射線的極坐標方程為,若分別與交于異于極點的兩點,求的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),,為的導(dǎo)函數(shù).
(1)討論的單調(diào)性,設(shè)的最小值為,并求證:
(2)若有三個零點,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com