科目: 來源: 題型:
【題目】如圖,已知橢圓:()的離心率為,并以拋物線:的焦點為上焦點.直線:()交拋物線于,兩點,分別以,為切點作拋物線的切線,兩切線相交于點,又點恰好在橢圓上.
(1)求橢圓的方程;
(2)求的最大值;
(3)求證:點恒在的外接圓內(nèi).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),滿足,則( )
A.函數(shù)有2個極小值點和1個極大值點
B.函數(shù)有2個極大值點和1個極小值點
C.函數(shù)有可能只有一個零點
D.有且只有一個實數(shù),使得函數(shù)有兩個零點
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標系中,以原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線,直線l的參數(shù)方程為:(t為參數(shù)),直線l與曲線C分別交于M,N兩點.
(1)寫出曲線C和直線l的普通方程;
(2)若點,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】工廠質(zhì)檢員從生產(chǎn)線上每半個小時抽取一件產(chǎn)品并對其某個質(zhì)量指標進行檢測,一共抽取了件產(chǎn)品,并得到如下統(tǒng)計表.該廠生產(chǎn)的產(chǎn)品在一年內(nèi)所需的維護次數(shù)與指標有關(guān),具體見下表.
質(zhì)量指標 | |||
頻數(shù) | |||
一年內(nèi)所需維護次數(shù) |
(1)以每個區(qū)間的中點值作為每組指標的代表,用上述樣本數(shù)據(jù)估計該廠產(chǎn)品的質(zhì)量指標的平均值(保留兩位小數(shù));
(2)用分層抽樣的方法從上述樣本中先抽取件產(chǎn)品,再從件產(chǎn)品中隨機抽取件產(chǎn)品,求這件產(chǎn)品的指標都在內(nèi)的概率;
(3)已知該廠產(chǎn)品的維護費用為元/次,工廠現(xiàn)推出一項服務:若消費者在購買該廠產(chǎn)品時每件多加元,該產(chǎn)品即可一年內(nèi)免費維護一次.將每件產(chǎn)品的購買支出和一年的維護支出之和稱為消費費用.假設這件產(chǎn)品每件都購買該服務,或者每件都不購買該服務,就這兩種情況分別計算每件產(chǎn)品的平均消費費用,并以此為決策依據(jù),判斷消費者在購買每件產(chǎn)品時是否值得購買這項維護服務?
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,直線的傾斜角為,且經(jīng)過點,以坐標原點O為極點,軸正半軸為極軸建立極坐標系,直線,從原點O作射線交于點M,點N為射線OM上的點,滿足| ,記點N的軌跡為曲線C.
(1)①設動點,記是直線的向上方向的單位方向向量,且,以t為參數(shù)求直線的參數(shù)方程
②求曲線C的極坐標方程并化為直角坐標方程;
(2)設直線與曲線C交于P,Q兩點,求的值
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C:(0<b<2)的離心率為,F為橢圓的右焦點,PQ為過中心O的弦.
(1)求面積的最大值;
(2)動直線與橢圓交于A,B兩點,證明:在第一象限內(nèi)存在定點M,使得當直線AM與直線BM的斜率均存在時,其斜率之和是與t無關(guān)的常數(shù),并求出所有滿足條件的定點M的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】水稻是人類重要的糧食作物之一,耕種與食用的歷史都相當悠久,日前我國南方農(nóng)戶在播種水稻時一般有直播、撒酒兩種方式.為比較在兩種不同的播種方式下水稻產(chǎn)量的區(qū)別,某市紅旗農(nóng)場于2019年選取了200塊農(nóng)田,分成兩組,每組100塊,進行試驗.其中第一組采用直播的方式進行播種,第二組采用撒播的方式進行播種.得到數(shù)據(jù)如下表:
產(chǎn)量(單位:斤) 播種方式 | [840,860) | [860,880) | [880,900) | [900,920) | [920,940) |
直播 | 4 | 8 | 18 | 39 | 31 |
散播 | 9 | 19 | 22 | 32 | 18 |
約定畝產(chǎn)超過900斤(含900斤)為“產(chǎn)量高”,否則為“產(chǎn)量低”
(1)請根據(jù)以上統(tǒng)計數(shù)據(jù)估計100塊直播農(nóng)田的平均產(chǎn)量(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表)
(2)請根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面的2×2列聯(lián)表,并判斷是否有99%的把握認為“產(chǎn)量高”與“播種方式”有關(guān)?
產(chǎn)量高 | 產(chǎn)量低 | 合計 | |
直播 | |||
散播 | |||
合計 |
附:
P(K2≥k0) | 0.10 | 0.010 | 0.001 |
k0 | 2.706 | 6.635 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】關(guān)于圓周率,數(shù)學發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的蒲豐實驗和查理斯實驗,受其啟發(fā),我們也可以通過設計下面的實驗來估計的值:先請240名同學,每人隨機寫下兩個都小于1的正實數(shù)x,y組成的實數(shù)對,再統(tǒng)計兩數(shù)能與1構(gòu)成鈍角三角形三邊的數(shù)對的個數(shù)m;最后再根據(jù)計數(shù)m來估計π的值.假設統(tǒng)計結(jié)果是,那么可以估計的近似值為____________.(用分數(shù)表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com