科目: 來源: 題型:
【題目】如圖,平行四邊形ABCD中,,E、F分別為AD,BC的中點.以EF為折痕把四邊形EFCD折起,使點C到達點M的位置,點D到達點N的位置,且.
(1)求證:平面NEB;
(2)若,求二面角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】新冠病毒是一種通過飛沫和接觸傳播的變異病毒,為篩查該病毒,有一種檢驗方式是檢驗血液樣本相關(guān)指標是否為陽性,對于份血液樣本,有以下兩種檢驗方式:一是逐份檢驗,則需檢驗次.二是混合檢驗,將其中份血液樣本分別取樣混合在一起,若檢驗結(jié)果為陰性,那么這份血液全為陰性,因而檢驗一次就夠了;如果檢驗結(jié)果為陽性,為了明確這份血液究竟哪些為陽性,就需要對它們再逐份檢驗,此時份血液檢驗的次數(shù)總共為次.某定點醫(yī)院現(xiàn)取得4份血液樣本,考慮以下三種檢驗方案:方案一,逐個檢驗;方案二,平均分成兩組檢驗;方案三,四個樣本混在一起檢驗.假設(shè)在接受檢驗的血液樣本中,每份樣本檢驗結(jié)果是陽性還是陰性都是相互獨立的,且每份樣本是陰性的概率為.
(Ⅰ)求把2份血液樣本混合檢驗結(jié)果為陽性的概率;
(Ⅱ)若檢驗次數(shù)的期望值越小,則方案越“優(yōu)”.方案一、二、三中哪個最“優(yōu)”?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓,A為C的上頂點,過A的直線l與C交于另一點B,與x軸交于點D,O點為坐標原點.
(1)若,求l的方程;
(2)已知P為AB的中點,y軸上是否存在定點Q,使得?若存在,求Q的坐標;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=x2+ax+blnx(a,b∈R),曲線y=f(x)在點(1,f(1))處的切線方程為2x﹣y﹣2=0.
(1)判斷f(x)在定義域內(nèi)的單調(diào)性,并說明理由;
(2)若對任意的x∈(1,+∞),不等式f(x)≤m(ex﹣1﹣1)恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,直線:(為參數(shù),),曲線:(為參數(shù)),與相切于點,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.
(1)求的極坐標方程及點的極坐標;
(2)已知直線:與圓:交于,兩點,記的面積為,的面積為,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】作家馬伯庸小說《長安十二時辰》中,靖安司通過長安城內(nèi)的望樓傳遞信息.同名改編電視劇中,望樓傳遞信息的方式有一種如下:如圖所示,在九宮格中,每個小方格可以在白色和紫色(此處以陰影代表紫色)之間變換,從而一共可以有512種不同的顏色組合,即代表512種不同的信息.現(xiàn)要求每一行,每一列上至多有一個紫色小方格(如圖所示即滿足要求).則一共可以傳遞______種信息.(用數(shù)字作答)
查看答案和解析>>
科目: 來源: 題型:
【題目】國際上通常用年齡中位數(shù)指標作為劃分國家或地區(qū)人口年齡構(gòu)成的標準:年齡中位數(shù)在20歲以下為“年輕型”人口;年齡中位數(shù)在20~30歲為“成年型”人口;年齡中位數(shù)在30歲以上為“老齡型”人口.
如圖反映了我國全面放開二孩政策對我國人口年齡中位數(shù)的影響.據(jù)此,對我國人口年齡構(gòu)成的類型做出如下判斷:①建國以來直至2000年為“成年型”人口;②從2010年至2020年為“老齡型”人口;③放開二孩政策之后我國仍為“老齡型”人口.其中正確的是( )
A.②③B.①③C.②D.①②
查看答案和解析>>
科目: 來源: 題型:
【題目】已知如圖所示的三棱錐D﹣ABC的四個頂點均在球O的球面上,△ABC和△DBC所在平面相互垂直,AB=3,AC=,BC=CD=BD=2,則球O的表面積為( )
A.4π B.12π C.16π D.36π
查看答案和解析>>
科目: 來源: 題型:
【題目】平面直角坐標系xOy中,拋物線E頂點在坐標原點,焦點為.以坐標原點為極點,x軸非負半軸為極軸建立極坐標系.
(Ⅰ)求拋物線E的極坐標方程;
(Ⅱ)過點傾斜角為的直線l交E于M,N兩點,若,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com