相關習題
 0  264768  264776  264782  264786  264792  264794  264798  264804  264806  264812  264818  264822  264824  264828  264834  264836  264842  264846  264848  264852  264854  264858  264860  264862  264863  264864  264866  264867  264868  264870  264872  264876  264878  264882  264884  264888  264894  264896  264902  264906  264908  264912  264918  264924  264926  264932  264936  264938  264944  264948  264954  264962  266669 

科目: 來源: 題型:

【題目】古希臘數(shù)學家阿波羅尼奧斯發(fā)現(xiàn):平面上到兩定點,距離之比為常數(shù)的點的軌跡是一個圓心在直線上的圓,該圓簡稱為阿氏圓.根據(jù)以上信息,解決下面的問題:如圖,在長方體中,,點在棱上,,動點滿足.若點在平面內(nèi)運動,則點所形成的阿氏圓的半徑為________;若點在長方體內(nèi)部運動,為棱的中點,的中點,則三棱錐的體積的最小值為___________

查看答案和解析>>

科目: 來源: 題型:

【題目】2020年席卷全球的新冠肺炎給世界人民帶來了巨大的災難,面對新冠肺炎,早發(fā)現(xiàn)、早診斷、早隔離、早治療是有效防控疾病蔓延的重要舉措之一.某社區(qū)對位居民是否患有新冠肺炎疾病進行篩查,先到社區(qū)醫(yī)務室進行口拭子核酸檢測,檢測結果成陽性者,再到醫(yī)院做進一步檢查,己知隨機一人其口拭子核酸檢測結果成陽性的概率為%,且每個人的口拭子核酸是否呈陽性相互獨立.

1)假設該疾病患病的概率是%,且患病者口拭子核酸呈陽性的概率為%,設這位居民中有一位的口拭子核酸檢測呈陽性,求該居民可以確診為新冠肺炎患者的概率;

2)根據(jù)經(jīng)驗,口拭子核酸檢測采用分組檢測法可有效減少工作量,具體操作如下:將位居民分成若干組,先取每組居民的口拭子核酸混在一起進行檢測,若結果顯示陰性,則可斷定本組居民沒有患病,不必再檢測;若結果顯示陽性,則說明本組中至少有一位居民患病,需再逐個進行檢測,現(xiàn)有兩個分組方案:

方案一:將位居民分成組,每組人;

方案二:將位居民分成組,每組人;

試分析哪一個方案的工作量更少?

(參考數(shù)據(jù):,

查看答案和解析>>

科目: 來源: 題型:

【題目】對于無窮數(shù)列,記,,若同時滿足條件①,均單調(diào)遞增;②,則稱是無窮互補數(shù)列.

1)若,,試判斷數(shù)列,是否為無窮互補數(shù)列,并說明理由;

2)若,且,是無窮互補數(shù)列,求數(shù)列項的和.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)上的單調(diào)區(qū)間;

2)用表示中的最大值,的導函數(shù),設函數(shù),若上恒成立,求實數(shù)的取值范圍;

3)證明:

查看答案和解析>>

科目: 來源: 題型:

【題目】已知過點,且與內(nèi)切,設的圓心的軌跡為

1)求軌跡C的方程;

2)設直線不經(jīng)過點且與曲線交于點兩點,若直線與直線的斜率之積為,判斷直線是否過定點,若過定點,求出此定點的坐標,若不過定點,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖1,在邊長為2的等邊中,分別為邊的中點,將AED沿折起,使得 , ,得到如圖2的四棱錐A-BCDE,連結,且交于點

1)求證:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】隨著馬拉松運動在全國各地逐漸興起,參與馬拉松訓練與比賽的人數(shù)逐年增加.為此,某市對參加馬拉松運動的情況進行了統(tǒng)計調(diào)査,其中一項是調(diào)査人員從參與馬拉松運動的人中隨機抽取100人,對其每月參與馬拉松運動訓練的夭數(shù)進行統(tǒng)計,得到以下統(tǒng)計表;

平均每月進行訓練的天數(shù)

人數(shù)

15

60

25

1)以這100人平均每月進行訓練的天數(shù)位于各區(qū)間的頻率代替該市參與馬拉松訓練的人平均每月進行訓練的天數(shù)位于該區(qū)間的概率.從該市所有參與馬拉松訓練的人中隨機抽取4個人,求恰好有2個人是“平均每月進行訓練的天數(shù)不少于20天”的概率;

2)依據(jù)統(tǒng)計表,用分層抽樣的方法從這100個人中抽取12個,再從抽取的12個人中隨機抽取3個,表示抽取的是“平均每月進行訓練的天數(shù)不少于20天”的人數(shù),求的分布列及數(shù)學期望

查看答案和解析>>

科目: 來源: 題型:

【題目】為了讓居民了解垃圾分類,養(yǎng)成垃圾分類的習慣,讓綠色環(huán)保理念深入人心.某市將垃圾分為四類:可回收物,餐廚垃圾,有害垃圾和其他垃圾.某班按此四類由10位同學組成四個宣傳小組,其中可回收物與餐廚垃圾宣傳小組各有2位同學,有害垃圾與其他垃圾宣傳小組各有3位同學.現(xiàn)從這10位同學中選派5人到某小區(qū)進行宣傳活動,則每個宣傳小組至少選派1人的概率為(

A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)).

1)若,求曲線與直線的兩個交點之間的距離;

2)若曲線上的點到直線距離的最大值為,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

1)當時,求在點處的切線方程;

2)若函數(shù)上單調(diào)遞增,求實數(shù)的取值范圍;

3)證明:當時,不等式成立.

查看答案和解析>>

同步練習冊答案