科目: 來源: 題型:
【題目】為豐富學(xué)生課外生活,某市組織了高中生鋼筆書法比賽,比賽分兩個(gè)階段進(jìn)行:第一階段由評(píng)委給出所有參賽作品評(píng)分,并確定優(yōu)勝者;第二階段為附加賽,參賽人員由組委會(huì)按規(guī)則另行確定.數(shù)據(jù)統(tǒng)計(jì)員對(duì)第一階段的分?jǐn)?shù)進(jìn)行了統(tǒng)計(jì)分析,這些分?jǐn)?shù)都在內(nèi),在以組距為5畫分?jǐn)?shù)的頻率分布直方圖(設(shè)“”)時(shí),發(fā)現(xiàn)滿足.
(1)試確定的所有取值,并求;
(2)組委會(huì)確定:在第一階段比賽中低于85分的參賽者無緣獲獎(jiǎng)也不能參加附加賽;分?jǐn)?shù)在的參賽者評(píng)為一等獎(jiǎng);分?jǐn)?shù)在的同學(xué)評(píng)為二等獎(jiǎng),但通過附加賽有的概率提升為一等獎(jiǎng);分?jǐn)?shù)在的同學(xué)評(píng)為三等獎(jiǎng),但通過附加賽有的概率提升為二等獎(jiǎng)(所有參加附加賽的獲獎(jiǎng)人員均不降低獲獎(jiǎng)等級(jí)).已知學(xué)生和均參加了本次比賽,且學(xué)生在第一階段評(píng)為二等獎(jiǎng).
()求學(xué)生最終獲獎(jiǎng)等級(jí)不低于學(xué)生的最終獲獎(jiǎng)等級(jí)的概率;
()已知學(xué)生和都獲獎(jiǎng),記兩位同學(xué)最終獲得一等獎(jiǎng)的人數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓與拋物線有共同的焦點(diǎn),且兩曲線的公共點(diǎn)到的距離是它到直線 (點(diǎn)在此直線右側(cè))的距離的一半.
(1)求橢圓的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),直線過點(diǎn)且與橢圓交于兩點(diǎn),以為鄰邊作平行四邊形.是否存在直線,使點(diǎn)落在橢圓或拋物線上?若存在,求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)在區(qū)間上有且僅有2個(gè)零點(diǎn),對(duì)于下列4個(gè)結(jié)論:①在區(qū)間上存在,滿足;②在區(qū)間有且僅有1個(gè)最大值點(diǎn);③在區(qū)間上單調(diào)遞增;④的取值范圍是,其中所有正確結(jié)論的編號(hào)是( )
A.①③B.①③④C.②③D.①④
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,的參數(shù)方程為(t為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.
(1)求的普通方程和曲線C的直角坐標(biāo)方程;
(2)求曲線C上的點(diǎn)到距離的最大值及該點(diǎn)坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如下面左圖,在直角梯形中,,,,,,點(diǎn)在上,且,將沿折起,得到四棱錐(如下面右圖).
(1)求四棱錐的體積的最大值;
(2)在線段上是否存在點(diǎn),使得平面?若存在,求的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知四面體的棱長(zhǎng)滿足,,現(xiàn)將四面體放入一個(gè)主視圖為等邊三角形的圓錐中,使得四面體可以在圓錐中任意轉(zhuǎn)動(dòng),則圓錐側(cè)面積的最小值為___________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com