相關(guān)習題
 0  263790  263798  263804  263808  263814  263816  263820  263826  263828  263834  263840  263844  263846  263850  263856  263858  263864  263868  263870  263874  263876  263880  263882  263884  263885  263886  263888  263889  263890  263892  263894  263898  263900  263904  263906  263910  263916  263918  263924  263928  263930  263934  263940  263946  263948  263954  263958  263960  263966  263970  263976  263984  266669 

科目: 來源: 題型:

【題目】為推進農(nóng)村經(jīng)濟結(jié)構(gòu)調(diào)整,某鄉(xiāng)村舉辦水果觀光采摘節(jié),并推出配套鄉(xiāng)村游項目.現(xiàn)統(tǒng)計了4月份100名游客購買水果的情況,得到如圖所示的頻率分布直方圖.

1)若將購買金額不低于80元的游客稱為優(yōu)質(zhì)客戶”,現(xiàn)用分層抽樣的方法從樣本的優(yōu)質(zhì)客戶中抽取5人,求這5人中購買金額不低于100元的人數(shù);

2)從(1)中的5人中隨機抽取2人作為幸運客戶免費參加鄉(xiāng)村游項目,請列出所有的基本事件,并求2人中至少有1人購買金額不低于100元的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】我國古代數(shù)學專著《九章算術(shù)》中有一個“兩鼠穿墻題”,其內(nèi)容為:“今有垣厚五尺,兩鼠對穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半.問何日相逢?各穿幾何?”如圖的程序框圖源于這個題目,執(zhí)行該程序框圖,若輸入x=20,則輸出的結(jié)果為(  )

A. 3B. 4C. 5D. 6

查看答案和解析>>

科目: 來源: 題型:

【題目】十七世紀,法國數(shù)學家費馬提出猜想;“當整數(shù)時,關(guān)于、、的方程沒有正整數(shù)解”,經(jīng)歷三百多年,1995年英國數(shù)學家安德魯懷爾斯給出了證明,使它終成費馬大定理,則下面命題正確的是(

①對任意正整數(shù),關(guān)于、的方程都沒有正整數(shù)解;

②當整數(shù)時,關(guān)于、、的方程至少存在一組正整數(shù)解;

③當正整數(shù)時,關(guān)于、的方程至少存在一組正整數(shù)解;

④若關(guān)于、、的方程至少存在一組正整數(shù)解,則正整數(shù);

A.①②/span>B.①③C.②④D.③④

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓:,過橢圓右焦點的最短弦長是,且點在橢圓上.

1)求該橢圓的標準方程;

2)設(shè)動點滿足:,其中,是橢圓上的點,直線與直線的斜率之積為,求點的軌跡方程并判斷是否存在兩個定點,使得為定值?若存在,求出定值;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】通過隨機詢問50名性別不同的大學生是否愛好某項運動,得到如下的列聯(lián)表,由

參照附表,得到的正確結(jié)論是

  

A. 99.5%以上的把握認為“愛好該項運動與性別有關(guān)”

B. 99.5%以上的把握認為“愛好該項運動與性別無關(guān)”

C. 在犯錯誤的概率不超過01%的前提下,認為“愛好該項運動與性別有關(guān)”

D. 在犯錯誤的概率不超過01%的前提下,認為“愛好該項運動與性別無關(guān)”

查看答案和解析>>

科目: 來源: 題型:

【題目】一年之計在于春,一日之計在于晨,春天是播種的季節(jié),是希望的開端.某種植戶對一塊地的個坑進行播種,每個坑播3粒種子,每粒種子發(fā)芽的概率均為,且每粒種子是否發(fā)芽相互獨立.對每一個坑而言,如果至少有兩粒種子發(fā)芽,則不需要進行補播種,否則要補播種.

(1)當取何值時,有3個坑要補播種的概率最大?最大概率為多少?

(2)當時,用表示要補播種的坑的個數(shù),求的分布列與數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,楔形幾何體由一個三棱柱截去部分后所得,底面側(cè)面,,楔面是邊長為2的正三角形,點在側(cè)面的射影是矩形的中心,點上,且

1)證明:平面;

2)求楔面與側(cè)面所成二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】在四棱柱中,,平面,.

(1)證明:.

(2)求與平面所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的離心率為,橢圓經(jīng)過點.

(1)求橢圓的標準方程;

(2)設(shè)點是橢圓上的任意一點,射線與橢圓交于點,過點的直線與橢圓有且只有一個公共點,直線與橢圓交于,兩個相異點,證明:面積為定值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(1)若曲線在點處的切線方程是,求函數(shù)上的值域;

(2)當時,記函數(shù),若函數(shù)有三個零點,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案