科目: 來源: 題型:
【題目】為推進農(nóng)村經(jīng)濟結(jié)構(gòu)調(diào)整,某鄉(xiāng)村舉辦水果觀光采摘節(jié),并推出配套鄉(xiāng)村游項目.現(xiàn)統(tǒng)計了4月份100名游客購買水果的情況,得到如圖所示的頻率分布直方圖.
(1)若將購買金額不低于80元的游客稱為“優(yōu)質(zhì)客戶”,現(xiàn)用分層抽樣的方法從樣本的“優(yōu)質(zhì)客戶”中抽取5人,求這5人中購買金額不低于100元的人數(shù);
(2)從(1)中的5人中隨機抽取2人作為幸運客戶免費參加鄉(xiāng)村游項目,請列出所有的基本事件,并求2人中至少有1人購買金額不低于100元的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】我國古代數(shù)學專著《九章算術(shù)》中有一個“兩鼠穿墻題”,其內(nèi)容為:“今有垣厚五尺,兩鼠對穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半.問何日相逢?各穿幾何?”如圖的程序框圖源于這個題目,執(zhí)行該程序框圖,若輸入x=20,則輸出的結(jié)果為( )
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目: 來源: 題型:
【題目】十七世紀,法國數(shù)學家費馬提出猜想;“當整數(shù)時,關(guān)于、、的方程沒有正整數(shù)解”,經(jīng)歷三百多年,1995年英國數(shù)學家安德魯懷爾斯給出了證明,使它終成費馬大定理,則下面命題正確的是( )
①對任意正整數(shù),關(guān)于、、的方程都沒有正整數(shù)解;
②當整數(shù)時,關(guān)于、、的方程至少存在一組正整數(shù)解;
③當正整數(shù)時,關(guān)于、、的方程至少存在一組正整數(shù)解;
④若關(guān)于、、的方程至少存在一組正整數(shù)解,則正整數(shù);
A.①②/span>B.①③C.②④D.③④
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓:,過橢圓右焦點的最短弦長是,且點在橢圓上.
(1)求該橢圓的標準方程;
(2)設(shè)動點滿足:,其中,是橢圓上的點,直線與直線的斜率之積為,求點的軌跡方程并判斷是否存在兩個定點、,使得為定值?若存在,求出定值;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】通過隨機詢問50名性別不同的大學生是否愛好某項運動,得到如下的列聯(lián)表,由得
參照附表,得到的正確結(jié)論是
A. 有99.5%以上的把握認為“愛好該項運動與性別有關(guān)”
B. 有99.5%以上的把握認為“愛好該項運動與性別無關(guān)”
C. 在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別有關(guān)”
D. 在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別無關(guān)”
查看答案和解析>>
科目: 來源: 題型:
【題目】一年之計在于春,一日之計在于晨,春天是播種的季節(jié),是希望的開端.某種植戶對一塊地的個坑進行播種,每個坑播3粒種子,每粒種子發(fā)芽的概率均為,且每粒種子是否發(fā)芽相互獨立.對每一個坑而言,如果至少有兩粒種子發(fā)芽,則不需要進行補播種,否則要補播種.
(1)當取何值時,有3個坑要補播種的概率最大?最大概率為多少?
(2)當時,用表示要補播種的坑的個數(shù),求的分布列與數(shù)學期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,楔形幾何體由一個三棱柱截去部分后所得,底面側(cè)面,,楔面是邊長為2的正三角形,點在側(cè)面的射影是矩形的中心,點在上,且
(1)證明:平面;
(2)求楔面與側(cè)面所成二面角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓:的離心率為,橢圓:經(jīng)過點.
(1)求橢圓的標準方程;
(2)設(shè)點是橢圓上的任意一點,射線與橢圓交于點,過點的直線與橢圓有且只有一個公共點,直線與橢圓交于,兩個相異點,證明:面積為定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點處的切線方程是,求函數(shù)在上的值域;
(2)當時,記函數(shù),若函數(shù)有三個零點,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com