【題目】已知橢圓:,過(guò)橢圓右焦點(diǎn)的最短弦長(zhǎng)是,且點(diǎn)在橢圓上.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)動(dòng)點(diǎn)滿(mǎn)足:,其中,是橢圓上的點(diǎn),直線(xiàn)與直線(xiàn)的斜率之積為,求點(diǎn)的軌跡方程并判斷是否存在兩個(gè)定點(diǎn)、,使得為定值?若存在,求出定值;若不存在,說(shuō)明理由.
【答案】(1)(2)答案見(jiàn)解析
【解析】
(1)因?yàn)闄E圓:,過(guò)橢圓右焦點(diǎn)的最短弦長(zhǎng)是,可得.點(diǎn)在橢圓上,可得,即可求得答案;
(2)設(shè),,,則由得:,即,.點(diǎn),在橢圓上,結(jié)合已知,即可求得答案.
(1)橢圓:,過(guò)橢圓右焦點(diǎn)的最短弦長(zhǎng)是
,即①
點(diǎn)在橢圓上
即 ②
由①②解得: ,
化簡(jiǎn)可得:
解得,,,
橢圓的標(biāo)準(zhǔn)方程為:.
(2)設(shè),,,則由
得:,
即,.
點(diǎn),在橢圓上,
,,
故
,
設(shè),分別為直線(xiàn),的斜率,
由題設(shè)條件知:,可得,
,
點(diǎn)是橢圓上的點(diǎn),設(shè)該橢圓的左、右焦點(diǎn)為點(diǎn),,
使得為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列的前項(xiàng)和,對(duì)任意,都有(為常數(shù)).
(1)當(dāng)時(shí),求;
(2)當(dāng)時(shí),
(ⅰ)求證:數(shù)列是等差數(shù)列;
(ⅱ)若數(shù)列為遞增數(shù)列且,設(shè),試問(wèn)是否存在正整數(shù)(其中),使成等比數(shù)列?若存在,求出所有滿(mǎn)足條件的數(shù)組;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的離心率為,橢圓上的點(diǎn)到左焦點(diǎn)的最小值為.
(1)求橢圓的方程;
(2)已知直線(xiàn)與軸交于點(diǎn),過(guò)點(diǎn)的直線(xiàn)與交于、兩點(diǎn),點(diǎn)為直線(xiàn)上任意一點(diǎn),設(shè)直線(xiàn)與直線(xiàn)交于點(diǎn),記,,的斜率分別為,,,則是否存在實(shí)數(shù),使得恒成立?若是,請(qǐng)求出的值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年9月24日,阿貝爾獎(jiǎng)和菲爾茲獎(jiǎng)雙料得主、英國(guó)著名數(shù)學(xué)家阿蒂亞爵士宣布自己證明了黎曼猜想,這一事件引起了數(shù)學(xué)界的震動(dòng).在1859年,德國(guó)數(shù)學(xué)家黎曼向科學(xué)院提交了題目為《論小于某值的素?cái)?shù)個(gè)數(shù)》的論文并提出了一個(gè)命題,也就是著名的黎曼猜想.在此之前,著名數(shù)學(xué)家歐拉也曾研究過(guò)這個(gè)問(wèn)題,并得到小于數(shù)字的素?cái)?shù)個(gè)數(shù)大約可以表示為的結(jié)論.若根據(jù)歐拉得出的結(jié)論,估計(jì)10000以?xún)?nèi)的素?cái)?shù)的個(gè)數(shù)為(素?cái)?shù)即質(zhì)數(shù),,計(jì)算結(jié)果取整數(shù))
A. 1089 B. 1086 C. 434 D. 145
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的離心率為,橢圓:經(jīng)過(guò)點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)是橢圓上的任意一點(diǎn),射線(xiàn)與橢圓交于點(diǎn),過(guò)點(diǎn)的直線(xiàn)與橢圓有且只有一個(gè)公共點(diǎn),直線(xiàn)與橢圓交于,兩個(gè)相異點(diǎn),證明:面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某快遞公司收取快遞費(fèi)用的標(biāo)準(zhǔn)是:重量不超過(guò)的包裹收費(fèi)10元;重量超過(guò)的包裹,除收費(fèi)10元之外,超過(guò)的部分,每超出(不足,按計(jì)算)需要再收費(fèi)5元.該公司近60天每天攬件數(shù)量的頻率分布直方圖如下圖所示(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表).
(1)求這60天每天包裹數(shù)量的平均值和中位數(shù);
(2)該公司從收取的每件快遞的費(fèi)用中抽取5元作為前臺(tái)工作人員的工資和公司利潤(rùn),剩余的作為其他費(fèi)用.已知公司前臺(tái)有工作人員3人,每人每天工資100元,以樣本估計(jì)總體,試估計(jì)該公司每天的利潤(rùn)有多少元?
(3)小明打算將四件禮物隨機(jī)分成兩個(gè)包裹寄出,且每個(gè)包裹重量都不超過(guò),求他支付的快遞費(fèi)為45元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著城市地鐵建設(shè)的持續(xù)推進(jìn),市民的出行也越來(lái)越便利.根據(jù)大數(shù)據(jù)統(tǒng)計(jì),某條地鐵線(xiàn)路運(yùn)行時(shí),發(fā)車(chē)時(shí)間間隔t(單位:分鐘)滿(mǎn)足:4≤t≤15,N,平均每趟地鐵的載客人數(shù)p(t)(單位:人)與發(fā)車(chē)時(shí)間間隔t近似地滿(mǎn)足下列函數(shù)關(guān)系:,其中.
(1)若平均每趟地鐵的載客人數(shù)不超過(guò)1500人,試求發(fā)車(chē)時(shí)間間隔t的值.
(2)若平均每趟地鐵每分鐘的凈收益為(單位:元),問(wèn)當(dāng)發(fā)車(chē)時(shí)間間隔t為多少時(shí),平均每趟地鐵每分鐘的凈收益最大?井求出最大凈收益.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】東方商店欲購(gòu)進(jìn)某種食品(保質(zhì)期兩天),此商店每?jī)商熨?gòu)進(jìn)該食品一次(購(gòu)進(jìn)時(shí),該食品為剛生產(chǎn)的).根據(jù)市場(chǎng)調(diào)查,該食品每份進(jìn)價(jià)元,售價(jià)元,如果兩天內(nèi)無(wú)法售出,則食品過(guò)期作廢,且兩天內(nèi)的銷(xiāo)售情況互不影響,為了了解市場(chǎng)的需求情況,現(xiàn)統(tǒng)計(jì)該產(chǎn)品在本地區(qū)天的銷(xiāo)售量如下表:
(視樣本頻率為概率)
(1)根據(jù)該產(chǎn)品天的銷(xiāo)售量統(tǒng)計(jì)表,記兩天中一共銷(xiāo)售該食品份數(shù)為,求的分布列與期望
(2)以?xún)商靸?nèi)該產(chǎn)品所獲得的利潤(rùn)期望為決策依據(jù),東方商店一次性購(gòu)進(jìn)或份,哪一種得到的利潤(rùn)更大?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com