(本小題滿分14分)
已知棱長為1的正方體ABCD-A1B1C1D1中,P在對角線A1C1上,記二面角P-AB-C為α,二面角P-BC-A為β。
(1)當(dāng)A1P:PC1=1:3時,求cos(α+β)的大小。
(2)點(diǎn)P是線段A1C1(包括端點(diǎn))上的一個動點(diǎn),問:當(dāng)點(diǎn)P在什么位置時,α+β有最小值?
(1)- (2)P為A1C1的中點(diǎn)
解析試題分析:
作PO⊥面ABCD于O,作OE⊥AB于E,OF⊥BC于F
∵正方體ABCD-A1B1C1D1
∴點(diǎn)O在線段AC上,且AO:OC=1:3
∴α=∠PEO,β=∠PFO
EO=,F(xiàn)O=,PO=1,PE=,PF= 2分
cosα=,sinα=,cosβ=, sinβ=
cos(α+β)=cosαcosβ-sinαsinβ==- 4分
(2)(8分)
設(shè)A1P=kA1C1,k∈[0,1] 5分
由第(1)題可知α=∠PEO,β=∠PFO
EO=k,FO=1-k,PO=1,PE=,PF=
cosα=,sinα=,cosβ=,
sinβ= 7分
當(dāng)k=0或1時,即點(diǎn)P與A1或C1重合時,其中一個角為,另一個角為,
此時α+β=,tan(α+β)= -1 8分
∴當(dāng)k≠0,且k≠1時,tanα=,tanβ=zxxk
∴tan(α+β)
= 11分
∵k∈(0,1) ∴ ∴tan(α+β)∈
∵ ∴
∴tan(α+β)=時,α+β有最小值,此時k=時,即點(diǎn)P為A1C1的中點(diǎn)。 14分
考點(diǎn):二面角的求法
點(diǎn)評:本題有一定難度,多章節(jié)知識的綜合
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,在四棱錐S - ABCD中,底面ABCD是直角梯形,側(cè)棱SA⊥底面ABCD,AB垂直于AD和BC,SA ="AB=BC" =2,AD =1.M是棱SB的中點(diǎn).
(Ⅰ)求證:AM∥面SCD;
(Ⅱ)求面SCD與面SAB所成二面角的余弦值;
(Ⅲ)設(shè)點(diǎn)N是直線CD上的動點(diǎn),MN與面SAB所成的角為,求sin的最大值,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分) 如圖,在四棱錐中,底面是正方形,側(cè)棱⊥底面,,是的中點(diǎn),作交于點(diǎn)
(1) 證明//平面;
(2) 證明⊥平面;
(3) 求二面角——的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)如圖,已知三棱錐A-BPC中,AP⊥PC,AC⊥BC,M為AB中點(diǎn),D為PB中點(diǎn),且△PMB為正三角形.
(Ⅰ)求證:DM∥平面APC;
(II)求證:平面ABC⊥平面APC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在長方體中,,,是棱上一點(diǎn),
(1)若為CC1的中點(diǎn),求異面直線A1M和C1D1所成的角的正切值;
(2)是否存在這樣的,使得平面ABM⊥平面A1B1M,若存在,求出的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求證:PC⊥BC;
(2)求點(diǎn)A到平面PBC的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com