(本小題滿分12分)如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求證:PC⊥BC;
(2)求點(diǎn)A到平面PBC的距離.
 

(1)證明:見解析;(2)點(diǎn)A到平面PBC的距離等于

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,P在對(duì)角線A1C1上,記二面角P-AB-C為α,二面角P-BC-A為β。

(1)當(dāng)A1P:PC1=1:3時(shí),求cos(α+β)的大小。
(2)點(diǎn)P是線段A1C1(包括端點(diǎn))上的一個(gè)動(dòng)點(diǎn),問:當(dāng)點(diǎn)P在什么位置時(shí),α+β有最小值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)如圖(甲),在直角梯形ABED中,AB//DE,ABBE,ABCD,且BC=CD,AB=2,F、H、G分別為AC ,AD ,DE的中點(diǎn),現(xiàn)將△ACD沿CD折起,使平面ACD平面CBED,如圖(乙).
(1)求證:平面FHG//平面ABE;
(2)記表示三棱錐B-ACE 的體積,求的最大值;
(3)當(dāng)取得最大值時(shí),求二面角D-AB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分10分) 如圖,用一付直角三角板拼成一直二面角A—BD—C,若其中給定 AB="AD" =2,,,
(Ⅰ)求三棱錐A-BCD的體積;
(Ⅱ)求點(diǎn)A到BC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知矩形ABCD所在平面外一點(diǎn)P,PA⊥平面ABCD,E、F分別是 AB、PC的中點(diǎn).
(1) 求證:EF∥平面PAD;
(2) 求證:EF⊥CD;
(3) 若∠PDA=45°,求EF與平面ABCD所成的角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

、如圖,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中點(diǎn)。
求證:(1)PA∥平面BDE
(2)平面PAC平面BDE

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分15分)如圖,在四棱錐中,底面是矩形,平面,與平面所成角的正切值依次是,,依次是的中點(diǎn).
(Ⅰ)求證:;
(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分16分)如圖①,分別是直角三角形的中點(diǎn),,沿將三角形折成如圖②所示的銳二面角,若為線段中點(diǎn).求證:
(1)直線平面;
(2)平面平面
      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(14分)如圖,四棱錐P—ABCD的底面是AB=2,BC=的矩形,側(cè)面PAB
是等邊三角形,且側(cè)面PAB⊥底面ABCD
(I)證明:側(cè)面PAB⊥側(cè)面PBC;
(II)求側(cè)棱PC與底面ABCD所成的角;
(III)求直線AB與平面PCD的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案