已知定義域?yàn)镽的函數(shù)y=f(x)和y=g(x),它們分別滿(mǎn)足條件:對(duì)任意a,b∈R,都有f(a+b)=f(a)+f(b);對(duì)任意a,b∈R,都有g(shù)(a+b)=g(a)•g(b),且對(duì)任意x>0,g(x)>1.
(1)求f(0)、g(0)的值;
(2)證明函數(shù)y=f(x)是奇函數(shù);
(3)證明x<0時(shí),0<g(x)<1,且函數(shù)y=g(x)在R上是增函數(shù);
(4)試各舉出一個(gè)符合函數(shù)y=f(x)和y=g(x)的實(shí)例.

解:(1)令a=b=0,則f(0)=f(0)+f(0)?f(0)=0
g(0)=g(0)•g(0)?g(0)=0或g(0)=1,
若g(0)=0,則g(x)=0,與條件矛盾.
故g(0)=1(也可令a=0,b=1,則不需要檢驗(yàn))
(2)f(x)的定義域?yàn)镽,關(guān)于數(shù)0對(duì)稱(chēng),
令a=x,b=-x,則f(-x)=-f(x).
故f(x)為奇函數(shù).
(3)當(dāng)x<0時(shí),-x>0,g(-x)>1,
又g(x)•g(-x)=g(0)=1?0<g(x)<1
故?x∈R,g(x)>0
證法一:設(shè)x1,x2為R上任意兩個(gè)實(shí)數(shù),且x1<x2
則x1-x2<0,g(x1-x2)<1g(x1)-g(x2
=g[(x1-x2)+x2]-g(x2)=[g(x1-x2)-1]•g(x2)<0.
故g(x)為R上的增函數(shù).
證法二:設(shè)x1,x2為R上任意兩個(gè)實(shí)數(shù),且x1<x2,

∴g(x)為R上的增函數(shù).
(4)f(x)=2x;g(x)=2x
分析:(1)特值法,結(jié)合問(wèn)題對(duì)a、b取特值即可求解;
(2)特值法,令a=x,b=-x即可獲得f(-x)與f(x)的關(guān)系,從而問(wèn)題即可獲得求解;
(3)根據(jù)函數(shù)單調(diào)性的定義即可證明,注意條件對(duì)任意x>0,g(x)>1的利用,同時(shí)用定義時(shí)既可采用做差法也可采用做商法;
(4)根據(jù)奇偶性和單調(diào)性在基本初等函數(shù)中尋找實(shí)例即可.
點(diǎn)評(píng):本題考查的是函數(shù)的單調(diào)性及奇偶性等性質(zhì)問(wèn)題.在解答的過(guò)程當(dāng)中充分體現(xiàn)了特值的思想、做差的方法、做商的方法以及對(duì)基本初等函數(shù)的理解及應(yīng)用.值得同學(xué)們體會(huì)反思.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•石家莊二模)已知定義域?yàn)镽的函數(shù)f(x)在(1,+∞)上為減函數(shù),且函數(shù)y=f(x+1)為偶函數(shù),則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)滿(mǎn)足f(x)f(x+2)=5,若f(2)=3,則f(2012)=
5
3
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)在(4,+∞)上為減函數(shù),且函數(shù)y=f(x)的對(duì)稱(chēng)軸為x=4,則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)=
-2x+a2x+1
是奇函數(shù)
(1)求a值;
(2)判斷并證明該函數(shù)在定義域R上的單調(diào)性;
(3)若對(duì)任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求實(shí)數(shù)k的取值范圍;
(4)設(shè)關(guān)于x的函數(shù)F(x)=f(4x-b)+f(-2x+1)有零點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)滿(mǎn)足f(4-x)=-f(x),當(dāng)x<2時(shí),f(x)單調(diào)遞減,如果x1+x2>4且(x1-2)(x2-2)<0,則f(x1)+f(x2)的值( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案