【題目】已知函數.
(1)若f(-1)=f(1),求a,并直接寫出函數的單調增區(qū)間;
(2)當a≥時,是否存在實數x,使得=一?若存在,試確定這樣的實數x的個數;若不存在,請說明理由.
【答案】(1),單調增區(qū)間為,;(2)2個.
【解析】
(1)首先根據題中所給的函數解析式,利用,得到所滿足的等量關系式,求得的值,從而得到函數的解析式,進而求得函數的單調增區(qū)間;
(2)根據條件,結合函數解析式,分類討論,分析性質,
(1)由,得,解得.
此時,函數
所以函數的單調增區(qū)間為,.
(2)顯然,不滿足;
若,則,由,得,
化簡,得,無解:
若,則,由,得,
化簡,得.
令,.
當時,;
下面證明函數在上是單調增函數.
任取,且,
則
由于
,
所以,即,故在上是單調增函數。
因為,,
所以,又函數的圖象不間斷,所以函數在上有且只有一個零點.
即當時,有且只有一個實數x滿足.
因為當滿足時,實數也一定滿足,即滿足的根成對出現(互為相反數);
所以,所有滿足的實數x的個數為2.
科目:高中數學 來源: 題型:
【題目】已知三點,,,曲線上任意一點滿足.
(1)求的方程;
(2)動點 在曲線上,是曲線在處的切線.問:是否存在定點使得與都相交,交點分別為,且與的面積之比為常數?若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= ﹣mx(m∈R). (Ⅰ)當m=0時,討論函數f(x)的單調性;
(Ⅱ)當b>a>0時,總有 >1成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】筒車是我國古代發(fā)明的一種水利灌溉工具,因其經濟又環(huán)保,至今還在農業(yè)生產中得到使用,如左下圖.假定在水流量穩(wěn)定的情況下,半徑為3m的筒車上的每一個盛水桶都按逆時針方向作角速度為rad/min的勻速圓周運動,平面示意圖如右下圖,己知筒車中心O到水面BC的距離為2m,初始時刻其中一個盛水筒位于點P0處,且∠P0OA=(OA//BC),則8min后該盛水筒到水面的距離為____m.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC–A1B1C1中,AB=BC,D為AC的中點,O為四邊形B1C1CB的對角線的交點,AC⊥BC1.求證:
(1)OD∥平面A1ABB1;
(2)平面A1C1CA⊥平面BC1D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市從高二年級隨機選取1000名學生,統(tǒng)計他們選修物理、化學、生物、政治、歷史和地理六門課程(前3門為理科課程,后3門為文科課程)的情況,得到如下統(tǒng)計表,其中“√”表示選課,“空白”表示未選.
科目 方案 人數 | 物理 | 化學 | 生物 | 政治 | 歷史 | 地理 | |
一 | 220 | √ | √ | √ | |||
二 | 200 | √ | √ | √ | |||
三 | 180 | √ | √ | √ | |||
四 | 175 | √ | √ | √ | |||
五 | 135 | √ | √ | √ | |||
六 | 90 | √ | √ | √ |
(Ⅰ)在這1000名學生中,從選修物理的學生中隨機選取1人,求該學生選修政治的概率;
(Ⅱ)在這1000名學生中,從選擇方案一、二、三的學生中各選取2名學生,如果在這6名學生中隨機選取2名,求這2名學生除選修物理以外另外兩門選課中有相同科目的概率;
(Ⅲ)利用表中數據估計該市選課偏文(即選修至少兩門文科課程)的學生人數多還是偏理(即選修至少兩門理科課程)的學生人數多,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“三個內角的度數可以構成等差數列”是“中有一個內角為”的( 。
A. 充分不必要條件B. 必要不充分條件
C. 充要條件D. 既不充分也不必要條件
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高一舉行了一次數學競賽,為了了解本次競賽學生的成績情況,從中抽取了部分學生的分數(得分取正整數,滿分為)作為樣本(樣本容量為)進行統(tǒng)計,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,已知得分在[50,60),[90,100]的頻數分別為8,2.
(1)求樣本容量和頻率分布直方圖中的的值;
(2)估計本次競賽學生成績的中位數;
(3)在選取的樣本中,從競賽成績在分以上(含分)的學生中隨機抽取名學生,求所抽取的名學生中至少有一人得分在內的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com