在等比數(shù)列{an}中,a2a3=32,a5=32.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{an}的前n項和為Sn,求S1+2S2+…+nSn.

(1) an=2n     (2) (n-1)2n+2+4-n(n+1)

解析解:(1)設(shè)等比數(shù)列{an}的首項為a1,公比為q,依題意得

解得a1=2,q=2,
∴an=2·2n-1=2n.
(2)∵Sn表示數(shù)列{an}的前n項和,
∴Sn==2(2n-1),
∴S1+2S2+…+nSn=2[(2+2·22+…+n·2n)-(1+2+…+n)]=2(2+2·22+…+n·2n)-n(n+1),
設(shè)Tn=2+2·22+…+n·2n
則2Tn=22+2·23+…+n·2n+1
①-②,得-Tn=2+22+…+2n-n·2n+1
=-n·2n+1
=(1-n)2n+1-2,
∴Tn=(n-1)2n+1+2,
∴S1+2S2+…+nSn=2[(n-1)2n+1+2]-n(n+1)
=(n-1)2n+2+4-n(n+1).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{}中, ,,
(1)求證數(shù)列{}為等比數(shù)列.
(2)判斷265是否是數(shù)列{}中的項,若是,指出是第幾項,并求出該項以前所有項的和(不含265),若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等比數(shù)列各項都是正數(shù),.
(1)求數(shù)列的通項公式;
(2)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等比數(shù)列{an}中,a2=32,a8,an+1<an.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)Tn=log2a1+log2a2+…+log2an,求Tn的最大值及相應(yīng)的n值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙兩大超市同時開業(yè),第一年的全年銷售額均為a萬元,由于經(jīng)營方式不同,甲超市前n年的總銷售額為(n2-n+2)萬元,乙超市第n年的銷售額比前一年銷售額多a萬元.
(1)設(shè)甲、乙兩超市第n年的銷售額分別為an、bn,求an、bn的表達(dá)式;
(2)若其中某一超市的年銷售額不足另一超市的年銷售額的50%,則該超市將被另一超市收購,判斷哪一超市有可能被收購?如果有這種情況,將會出現(xiàn)在第幾年?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}的前n項和為Sn,且Sn=2an-1;數(shù)列{bn}滿足bn-1bnbnbn-1(n≥2,n∈N*),b1=1.
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量p=(an,2n),q=(2n+1,-an+1),n∈N*,pq垂直,且a1=1.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=log2an+1,求數(shù)列{an·bn}的前n項和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在數(shù)列中,,若函數(shù),在點處切線過點
(1)求證:數(shù)列為等比數(shù)列;
(2)求數(shù)列的通項公式和前n項和公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

等比數(shù)列{an}的前n項和為Sn,已知S1,S3,S2成等差數(shù)列.
(1)求{an}的公比q;
(2)若a1-a3=3,求Sn.

查看答案和解析>>

同步練習(xí)冊答案