【題目】經過點P( ,0)且與雙曲線4x2﹣y2=1只有一個交點的直線有條.
【答案】3
【解析】解:雙曲線的標準方程為 ﹣y2=1,
若過P的直線斜率k不存在,此時直線方程為x= 與雙曲線有一個交點,滿足條件.
若斜率k存在,則直線方程為y=k(x﹣ ),
代入4x2﹣y2=1得4x2﹣k2(x﹣ )2=1,
整理得(4﹣k2)x2+k2x﹣ ﹣1=0,
若4﹣k2=0,得k=2或k=﹣2,此時方程等價為4x﹣2=0,x= ,滿足直線和雙曲線只有一個交點,
若4﹣k2≠0,即k≠±2,若方程只有一個解,則判別式△=k4+4(4﹣k2)(1+ )=0,
即k4+(4﹣k2)(4+k2)=0,
即k4+16﹣k4=0,即16=0,此時方程不成立,
綜上滿足條件的直線有3條,
所以答案是:3.
科目:高中數(shù)學 來源: 題型:
【題目】已知圓x2+y2=4上一定點A(2,0),B(1,1)為圓內一點,P,Q為圓上的動點.
(1)求線段AP中點的軌跡方程;
(2)若∠PBQ=90°,求線段PQ中點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知單調遞增的等差數(shù)列{an},滿足|a10a11|>a10a11 , 且a102<a112 , Sn為其前n項和,則( )
A.a8+a12>0
B.S1 , S2 , …S19都小于零,S10為Sn的最小值
C.a8+a13<0
D.S1 , S2 , …S20都小于零,S10為Sn的最小值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高校甲、乙、丙、丁四個專業(yè)分別有150、150、400、300名學生,為了解學生的就業(yè)傾向,用分層抽樣的方法從該校這四個專業(yè)共抽取40名學生進行調查,應在丙專業(yè)抽取的學生人數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax3+bx+c在點x=2處取得極值c﹣16.
(1)求a,b的值;
(2)若f(x)有極大值28,求f(x)在[﹣3,3]上的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國古代太極圖是一種優(yōu)美的對稱圖.如果一個函數(shù)的圖像能夠將圓的面積和周長分成兩個相等的部分,我們稱這樣的函數(shù)為圓的“太極函數(shù)”.下列命題中錯誤命題的個數(shù)是( )
對于任意一個圓其對應的太極函數(shù)不唯一;
如果一個函數(shù)是兩個圓的太極函數(shù),那么這兩個圓為同心圓;
圓的一個太極函數(shù)為;
圓的太極函數(shù)均是中心對稱圖形;
奇函數(shù)都是太極函數(shù);
偶函數(shù)不可能是太極函數(shù).
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某個服裝店經營某種服裝,在某周內獲純利潤y/元與該周每天銷售這種服裝件數(shù)x/件之間的數(shù)據如表:
X | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
y | 66 | 69 | 73 | 81 | 89 | 90 | 91 |
已知x12+x22+…+x72=280,x1y1+x2y2+…+x7y7=3487.
(1)求 , ;
(2)畫出散點圖;
(3)判斷純利潤y與每天銷售件數(shù)x之間是否線性相關,如果線性相關,求出線性回歸方程.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com