【題目】已知函數(shù),若在定義域內(nèi)存在,使得成立,則稱為函數(shù)的局部對稱點(diǎn).
(1)若,證明:函數(shù)必有局部對稱點(diǎn);
(2)若函數(shù)在區(qū)間內(nèi)有局部對稱點(diǎn),求實數(shù)的取值范圍;
(3)若函數(shù)在上有局部對稱點(diǎn),求實數(shù)的取值范圍.
【答案】(1)見解析;(2);(3)
【解析】
試題分析:(1)利用題中所給的定義,通過二次函數(shù)的判別式大于0,證明二次函數(shù)有局部對稱點(diǎn);(2)利用方程有解,通過換元,轉(zhuǎn)化為打鉤函數(shù)有解問題,利用函數(shù)的圖象,確定實數(shù)c的取值范圍;(3)利用方程有解,通過換元,轉(zhuǎn)化為二次函數(shù)在給定區(qū)間有解,建立不等式組,通過解不等式組,求得實數(shù)的取值范圍.
試題解析:(1)由得=,代入得,
=,得到關(guān)于的方程=).
其中,由于且,所以恒成立,
所以函數(shù)=)必有局部對稱點(diǎn).
(2)方程=在區(qū)間上有解,于是,
設(shè)),,,
其中,所以.
(3),由于,
所以=.
于是=(*)在上有解.
令),則,
所以方程(*)變?yōu)?/span>=在區(qū)間內(nèi)有解,
需滿足條件:.
即,,化簡得.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在測試中,客觀題難度的計算公式為,其中為第題的難度, 為答對該題的人數(shù), 為參加測試的總?cè)藬?shù).現(xiàn)對某校高三年級240名學(xué)生進(jìn)行一次測試,共5道客觀題,測試前根據(jù)對學(xué)生的了解,預(yù)估了每道題的難度,如表所示:
題號 | 1 | 2 | 3 | 4 | 5 |
考前預(yù)估難度 | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
測試后,從中隨機(jī)抽取了20名學(xué)生的答題數(shù)據(jù)進(jìn)行統(tǒng)計,結(jié)果如表:
(Ⅰ)根據(jù)題中數(shù)據(jù),估計中240名學(xué)生中第5題的實測答對人數(shù);
(Ⅱ)從抽樣的20名學(xué)生中隨機(jī)抽取2名學(xué)生,記這2名學(xué)生中第5題答對的人數(shù)為,求的分布列和數(shù)學(xué)期望;
(Ⅲ)試題的預(yù)估難度和實測難度之間會有偏差.設(shè)為第題的實測難度,請用和設(shè)計一個統(tǒng)計量,并制定一個標(biāo)準(zhǔn)來判斷本次測試對難度的預(yù)估是否合理.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,等腰的底邊,高,點(diǎn)是線段上異于點(diǎn)的動點(diǎn),點(diǎn)在邊上,且,現(xiàn)沿將△折起到△的位置,使,記, 表示四棱錐的體積.
(1)求的表達(dá)式;(2)當(dāng)為何值時, 取得最大,并求最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(>0, ≠1, ≠﹣1),是定義在(﹣1,1)上的奇函數(shù).
(1)求實數(shù)的值;
(2)當(dāng)=1時,判斷函數(shù)在(﹣1,1)上的單調(diào)性,并給出證明;
(3)若且,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方形的中心為點(diǎn), 邊所在的直線方程為.
(1)求邊所在的直線方程和正方形外接圓的方程;
(2)若動圓過點(diǎn),且與正方形外接圓外切,求動圓圓心的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在半徑為,圓心角為的扇形金屬材料中剪出一個長方形,并且與的平分線平行,設(shè).
(1)試將長方形的面積表示為的函數(shù);
(2)若將長方形彎曲,使和重合焊接制成圓柱的側(cè)面,當(dāng)圓柱側(cè)面積最大時,求圓柱的體積(假設(shè)圓柱有上下底面);為了節(jié)省材料,想從△中直接剪出一個圓面作為圓柱的一個底面,請問是否可行?并說明理由.
(參考公式:圓柱體積公式.其中是圓柱底面面積,是圓柱的高;等邊三角形內(nèi)切圓半徑.其中是邊長)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】汽車是碳排放量比較大的交通工具,某地規(guī)定,從2017年開始,將對二氧化碳排放量超過130 g/km的輕型汽車進(jìn)行懲罰性征稅,檢測單位對甲、乙兩品牌輕型汽車各抽取5輛進(jìn)行二氧化碳排放量檢測,記錄如下(單位:g/km):
甲 | 80 | 110 | 120 | 140 | 150 |
乙 | 100 | 120 | x | 100 | 160 |
經(jīng)測算得乙品牌輕型汽車二氧化碳排放量的平均值為=120 g/km.
(1)求表中x的值,并比較甲、乙兩品牌輕型汽車二氧化碳排放量的穩(wěn)定性;
(2)從被檢測的5輛甲品牌輕型汽車中任取2輛,則至少有一輛二氧化碳排放量超過130 g/km的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn),是以為底邊的等腰三角形,點(diǎn)在直線:上.
(1)求邊上的高所在直線的方程;
(2)求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)x∈R,f(x)= ,若不等式f(x)+f(2x)≤k對于任意的x∈R恒成立,則實數(shù)k的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com