【題目】已知函數(shù)f(x)= (a>0且a≠1)的圖象上關(guān)于y軸對(duì)稱(chēng)的點(diǎn)至少有3對(duì),則實(shí)數(shù)a的范圍是(
A.(0,
B.( ,1)
C.( ,1)
D.(0,

【答案】A
【解析】解:若x>0,則﹣x<0,∵x<0時(shí),f(x)=sin( x)﹣1,

∴f(﹣x)=sin(﹣ x)﹣1=﹣sin( x)﹣1,

則若f(x)=sin( x)﹣1,(x<0)關(guān)于y軸對(duì)稱(chēng),

則f(﹣x)=﹣sin( x)﹣1=f(x),即y=﹣sin( x)﹣1,x>0,

設(shè)g(x)=﹣sin( x)﹣1,x>0,作出函數(shù)g(x)的圖象,

要使y=﹣sin( x)﹣1,x>0與f(x)=logax,x>0的圖象至少有3個(gè)交點(diǎn),如圖,

則0<a<1且滿(mǎn)足g(5)<f(5),

即﹣2<loga5,即loga5>logaa2,則5< ,解得0<a< ,

故選:A.

【考點(diǎn)精析】本題主要考查了函數(shù)奇偶性的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn)C在直角坐標(biāo)系xOy下的參數(shù)方程為 (θ為參數(shù)).以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求曲線(xiàn)C的極坐標(biāo)方程; (Ⅱ)直線(xiàn)l的極坐標(biāo)方程是ρcos(θ﹣ )=3 ,射線(xiàn)OT:θ= (ρ>0)與曲線(xiàn)C交于A點(diǎn),與直線(xiàn)l交于B,求線(xiàn)段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 是奇函數(shù)且當(dāng) 時(shí)是減函數(shù),若 ,則函數(shù) 的零點(diǎn)共有( )
A.4個(gè)
B.5個(gè)
C.6個(gè)
D.7個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f:A→B是A到B的一個(gè)映射,其中 ,f:(x,y)→(x-y,x+y),求與A中的元素(-1,2)相對(duì)應(yīng)的B中的元素和與B中的元素(-1,2)相對(duì)應(yīng)的A中的元素.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱 中, 底面 ,且 為等邊三角形, 的中點(diǎn).

(1)求證:直線(xiàn) 平面 ;
(2)求三棱錐 的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè) 是定義在同一區(qū)間 上的兩個(gè)函數(shù),若函數(shù) 為函數(shù) 的導(dǎo)函數(shù)),在 上有且只有兩個(gè)不同的零點(diǎn),則稱(chēng) 上的“關(guān)聯(lián)函數(shù)”,若 ,是 上的“關(guān)聯(lián)函數(shù)”,則實(shí)數(shù) 的取值范圍是( ).
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合A={x|-1≤x≤6},B={x|m-1≤x≤2m+1},已知BA.
(1)求實(shí)數(shù)m的取值范圍;
(2)當(dāng)x∈N時(shí),求集合A的子集的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,平面 平面 ,四邊形 為平行四邊形, , , , .

(1)求證: 平面 ;
(2)求 到平面 的距離;
(3)求三棱錐 的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在正方體ABCDABCD′中:

(1)求二面角D′-ABD的大;

(2)若MCD′的中點(diǎn),求二面角MABD的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案