【題目】如圖,在長方體、分別是棱AB、BC的中點(diǎn).

(1)證明四點(diǎn)共面;

(2)直線與平面所成角的大小.

【答案】1)見解析;(2

【解析】

1)連接AC,證明EFAC,推出EFA1C1,即可證明A1C1、FE四點(diǎn)共面;(2)以D為坐標(biāo)原點(diǎn),DA、DC、DD1分別為xyz軸,建立空間直角坐標(biāo)系,易求得,求出平面的法向量,利用空間向量的數(shù)量積求解直線CD1與平面A1C1FE所成的角的正弦函數(shù)值,進(jìn)而可得到角.

1)連接AC,因?yàn)?/span>E,F分別是AB,BC的中點(diǎn),

所以EFABC的中位線,所以EFAC,

由長方體的性質(zhì)知ACA1C1,所以EFA1C1,

所以A1C1、F、E四點(diǎn)共面.

(2)以D為坐標(biāo)原點(diǎn),DA、DC、DD1分別為xyz軸,建立空間直角坐標(biāo)系,

,,,

易求得,,,

設(shè)平面的法向量為,

,即,,得,

所以,所以,

所以直線與平面所成的角的正弦函數(shù)值為

故直線與平面所成角的大小為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了提高職工的工作積極性,在工資不變的情況下,某企業(yè)給職工兩種追加獎勵性績效獎金的方案:第一種方案 是每年年末(12月底)追加績效獎金一次,第一年末追加的績效獎金為萬元,以后每次所追加的績效獎金比上次所追加的績效獎金多萬元;第二種方案是每半年(6月底和12月底)各追加績效獎金一次,第一年的6月底追加的績效獎金為萬元,以后每次所追加的績效獎金比上次所追加的績效獎金多萬元.

假設(shè)你準(zhǔn)備在該企業(yè)工作年,根據(jù)上述方案,試問:

(1)如果你在該公司只工作2年,你將選擇哪一種追加績效獎金的方案?請說明理由.

(2)如果選擇第二種追加績效獎金的方案比選擇第一種方案的獎金總額多,你至少在該企業(yè)工作幾年?

(3)如果把第二種方案中的每半年追加萬元改成每半年追加萬元,那么在什么范圍內(nèi)取值時,選擇第二種方案的績效獎金總額總是比選擇第一種方案多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的前項和為,,公差為.

(1)若,求數(shù)列的通項公式;

(2)是否存在使成立?若存在,試找出所有滿足條件的,的值,并求出數(shù)列的通項公式;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中

(1)求的單調(diào)減區(qū)間;

(2)當(dāng)時,恒成立,求的取值范圍;

(3)設(shè) 只有兩個零點(diǎn)),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標(biāo)系內(nèi)的動點(diǎn)P到直線的距離與到點(diǎn)的距離比為

1)求動點(diǎn)P所在曲線E的方程;

2)設(shè)點(diǎn)Q為曲線E軸正半軸的交點(diǎn),過坐標(biāo)原點(diǎn)O作直線,與曲線E相交于異于點(diǎn)的不同兩點(diǎn),點(diǎn)C滿足,直線分別與以C為圓心,為半徑的圓相交于點(diǎn)A和點(diǎn)B,求△QAC與△QBC的面積之比的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】艾滋病是一種危害性極大的傳染病,由感染艾滋病病毒病毒引起,它把人體免疫系統(tǒng)中最重要的CD4T淋巴細(xì)胞作為主要攻擊目標(biāo),使人體喪失免疫功能下表是近八年來我國艾滋病病毒感染人數(shù)統(tǒng)計表:

年份

2011

2012

2013

2014

2015

2016

2017

2018

年份代碼x

1

2

3

4

5

6

7

8

感染者人數(shù)單位:萬人

85

請根據(jù)該統(tǒng)計表,畫出這八年我國艾滋病病毒感染人數(shù)的折線圖;

請用相關(guān)系數(shù)說明:能用線性回歸模型擬合yx的關(guān)系;

建立y關(guān)于x的回歸方程系數(shù)精確到,預(yù)測2019年我國艾滋病病毒感染人數(shù).

參考數(shù)據(jù):;,,

參考公式:相關(guān)系數(shù),

回歸方程中,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個命題:

1)任意兩個復(fù)數(shù)都不能比較大;(2為實(shí)數(shù)為實(shí)數(shù);(3)虛軸上的點(diǎn)對應(yīng)的復(fù)數(shù)都是純虛數(shù);(4)復(fù)數(shù)集與復(fù)平面內(nèi)的所有點(diǎn)所成的集合是一一對應(yīng)的.

其中正確命題的個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,的中點(diǎn).

(I)求證:平面平面;

(II)若異面直線所成角為,求平面與平面夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某科技創(chuàng)新公司在第一年年初購買了一臺價值昂貴的設(shè)備,該設(shè)備的第1年的維護(hù)費(fèi)支出為20萬元,從第2年到第6年,每年的維修費(fèi)增加4萬元,從第7年開始,每年維修費(fèi)為上一年的125%.

(1)求第n年該設(shè)備的維修費(fèi)的表達(dá)式;

(2)設(shè),若萬元,則該設(shè)備繼續(xù)使用,否則須在第n年對設(shè)備更新,求在第幾年必須對該設(shè)備進(jìn)行更新?

查看答案和解析>>

同步練習(xí)冊答案