【題目】假定某射手每次射擊命中的概率為,且只有3發(fā)子彈.該射手一旦射中目標(biāo),就停止射擊,否則就一直獨(dú)立地射擊到子彈用完.設(shè)耗用子彈數(shù)為X,求:

1)目標(biāo)被擊中的概率;

2X的概率分布列;

3)均值,方差VX).

【答案】1;(2)詳見解析;(3;

【解析】

1)利用獨(dú)立重復(fù)實(shí)驗(yàn)的概率,先求得目標(biāo)沒有被擊中的概率,再用對立事件的概率求解.

2X可能取的值為:12,3.分別求得相應(yīng)的概率,列出分布列.

3)由(2)利用期望和方差的公式求解.

1)由題意可得:目標(biāo)沒有被擊中的概率為:,

所以目標(biāo)被擊中的概率為:

2X可能取的值為:1,2,3

所以,

,

,

所以X的分布列為:

X

1

2

3

P

3)由(2)可得:均值

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形中,點(diǎn)作的垂線交的延長線于點(diǎn).連結(jié)于點(diǎn),如圖1,將沿折起,使得點(diǎn)到達(dá)點(diǎn)的位置.如圖2.

證明:直線平面

的中點(diǎn),的中點(diǎn),且平面平面求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)討論的單調(diào)性;

2)若有兩個(gè)極值點(diǎn)、,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

1)討論函數(shù)的單調(diào)性;

2)若函數(shù)存在兩個(gè)極值點(diǎn),(其中),且的取值范圍為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,,D,E分別是的中點(diǎn).

(1)求證:DE∥平面

(2)若,求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(Ⅰ)求曲線的普通方程與直線的直角坐標(biāo)方程;

(Ⅱ)若與平行的直線與曲線交于,兩點(diǎn).且在軸的截距為整數(shù),的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱的所有棱長都是2,分別是,的中點(diǎn).

1)求證:平面

2)求直線與平面所成角的正弦值;

3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)名著《九章算術(shù)》中記載:芻甍者,下有袤有廣,而上有袤無廣.芻,草也.甍,屋蓋也.”今有底面為正方形的屋脊形狀的多面體(如圖所示),下底面是邊長為2的正方形,上棱,EF//平面ABCDEF與平面ABCD的距離為2,該芻甍的體積為(

A.6B.C.D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,四邊形是菱形,,E上一點(diǎn),且,設(shè).

1)證明:平面

2)若,,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案