【題目】已知直線過點
,傾斜角為
,在以坐標(biāo)原點為極點,
軸的非負半軸為極軸的極坐標(biāo)系中,曲線
的方程為
.
(1)寫出直線的參數(shù)方程和曲線
的直角坐標(biāo)方程;
(2)若直線與曲線
相交于
兩點,設(shè)點
,求
的值.
【答案】(1)直線的參數(shù)方程為
(
為參數(shù)),曲線
的直角坐標(biāo)方程為
.(2)
【解析】
(1)直接利用參數(shù)方程和極坐標(biāo)方程公式化簡得到答案.
(2)將參數(shù)方程代入曲線的直角坐標(biāo)方程,利用韋達定理得到
,再計算
,
,代入計算得到答案.
(1)∵直線過點
,傾斜角為
∴可設(shè)直線
的參數(shù)方程為
(
為參數(shù)),
∵曲線的方程為
∴,∴
,∴
,
∴曲線的直角坐標(biāo)方程為
.
(2)由(1)知,直線的參數(shù)方程為
(
為參數(shù)),
兩點所對應(yīng)的參數(shù)分別為
,
,
將的參數(shù)方程代入到曲線
的直角坐標(biāo)方程為
中,
化簡得∴
,
∵,∴
,
,
∴.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大數(shù)據(jù)時代對于現(xiàn)代人的數(shù)據(jù)分析能力要求越來越高,數(shù)據(jù)擬合是一種把現(xiàn)有數(shù)據(jù)通過數(shù)學(xué)方法來代入某條數(shù)式的表示方式,比如,
,2,
,n是平面直角坐標(biāo)系上的一系列點,用函數(shù)
來擬合該組數(shù)據(jù),盡可能使得函數(shù)圖象與點列
比較接近.其中一種描述接近程度的指標(biāo)是函數(shù)的擬合誤差,擬合誤差越小越好,定義函數(shù)
的擬合誤差為:
.已知平面直角坐標(biāo)系上5個點的坐標(biāo)數(shù)據(jù)如表:
x | 1 | 3 | 5 | 7 | 9 |
y | 12 | 4 | 12 |
若用一次函數(shù)
來擬合上述表格中的數(shù)據(jù),求該函數(shù)的擬合誤差
的最小值,并求出此時的函數(shù)解析式
;
若用二次函數(shù)
來擬合題干表格中的數(shù)據(jù),求
;
請比較第
問中的
和第
問中的
,用哪一個函數(shù)擬合題目中給出的數(shù)據(jù)更好?
請至少寫出三條理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面
是邊長為
的菱形,
,
平面
,
,
,
為
的中點.
(1)求證:;
(2)求異面直線與
所成角的余弦值;
(3)判斷直線與平面
的位置關(guān)系,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱錐中,
是等邊三角形,
是線段
的中點,
是線段
上靠近
的四等分點,平面
平面
.
(1)求證:;
(2)若,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
,其中a為常數(shù),e是自然對數(shù)的底數(shù),曲線
在其與y軸的交點處的切線記作
,曲線
在其與x軸的交點處的切線記作
,且
.
(1)求之間的距離;
(2)若存在x使不等式成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線過點
,傾斜角為
,在以坐標(biāo)原點為極點,
軸的非負半軸為極軸的極坐標(biāo)系中,曲線
的方程為
.
(1)寫出直線的參數(shù)方程和曲線
的直角坐標(biāo)方程;
(2)若直線與曲線
相交于
兩點,設(shè)點
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,
. 對于函數(shù)
、
,若存在常數(shù)
,
,使得
,不等式
都成立,則稱直線是
函數(shù)
與
的分界線.
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時,試探究函數(shù)
與
是否存在“分界線”?若存在,求出分界線方程;若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年6月25日,《固體廢物污染環(huán)境防治法(修訂草案)》初次提請全國人大常委會審議,草案對“生活垃圾污染環(huán)境的防治”進行了專章規(guī)定.草案提出,國家推行生活垃圾分類制度.為了了解人民群眾對垃圾分類的認識,某市環(huán)保部門對該市市民進行了一次垃圾分類網(wǎng)絡(luò)知識問卷調(diào)查,每一位市民僅有一次參加機會,通過隨機抽樣,得到參加問卷調(diào)查的1000人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計結(jié)果如表所示:
得分 | |||||||
頻數(shù) | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由頻數(shù)分布表可以認為,此次問卷調(diào)查的得分服從正態(tài)分布
,
近似為這1000人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點值作為代表),請利用正態(tài)分布的知識求
;
(2)在(1)的條件下,市環(huán)保部門為此次參加問卷調(diào)查的市民制定如下獎勵方案:
①得分不低于 “的可以獲贈2次隨機話費,得分低于
的可以獲贈1次隨機話費;
②每次獲贈的隨機話費和對應(yīng)的概率為:
獲贈的隨機話費(單位:元) | 20 | 40 |
概率 |
現(xiàn)市民小王要參加此次問卷調(diào)查,記(單位:元)為該市民參加問卷調(diào)查獲贈的話費,求
的分布列及數(shù)學(xué)期望.
附:①;②若
,則
,
,
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過軸上動點
引拋物線
的兩條切線
,
,其中
,
為切線.
(1)若切線,
的斜率分別為
和
,求證:
為定值,并求出定值;
(2)當(dāng)最小時,求
的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com