【題目】已知直線過點(diǎn),傾斜角為,在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線的方程為.
(1)寫出直線的參數(shù)方程和曲線的直角坐標(biāo)方程;
(2)若直線與曲線相交于兩點(diǎn),設(shè)點(diǎn),求的值.
【答案】(1)直線的參數(shù)方程為(為參數(shù)),曲線的直角坐標(biāo)方程為.(2)
【解析】
(1)直接利用參數(shù)方程和極坐標(biāo)方程公式化簡得到答案.
(2)將參數(shù)方程代入曲線的直角坐標(biāo)方程,利用韋達(dá)定理得到,再計(jì)算,,代入計(jì)算得到答案.
(1)∵直線過點(diǎn),傾斜角為∴可設(shè)直線的參數(shù)方程為(為參數(shù)),
∵曲線的方程為
∴,∴,∴,
∴曲線的直角坐標(biāo)方程為.
(2)由(1)知,直線的參數(shù)方程為(為參數(shù)),
兩點(diǎn)所對應(yīng)的參數(shù)分別為,,
將的參數(shù)方程代入到曲線的直角坐標(biāo)方程為中,
化簡得∴,
∵,∴,
,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大數(shù)據(jù)時(shí)代對于現(xiàn)代人的數(shù)據(jù)分析能力要求越來越高,數(shù)據(jù)擬合是一種把現(xiàn)有數(shù)據(jù)通過數(shù)學(xué)方法來代入某條數(shù)式的表示方式,比如,,2,,n是平面直角坐標(biāo)系上的一系列點(diǎn),用函數(shù)來擬合該組數(shù)據(jù),盡可能使得函數(shù)圖象與點(diǎn)列比較接近.其中一種描述接近程度的指標(biāo)是函數(shù)的擬合誤差,擬合誤差越小越好,定義函數(shù)的擬合誤差為:.已知平面直角坐標(biāo)系上5個(gè)點(diǎn)的坐標(biāo)數(shù)據(jù)如表:
x | 1 | 3 | 5 | 7 | 9 |
y | 12 | 4 | 12 |
若用一次函數(shù)來擬合上述表格中的數(shù)據(jù),求該函數(shù)的擬合誤差的最小值,并求出此時(shí)的函數(shù)解析式;
若用二次函數(shù)來擬合題干表格中的數(shù)據(jù),求;
請比較第問中的和第問中的,用哪一個(gè)函數(shù)擬合題目中給出的數(shù)據(jù)更好?請至少寫出三條理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是邊長為的菱形,, 平面,,,為的中點(diǎn).
(1)求證:;
(2)求異面直線與所成角的余弦值;
(3)判斷直線與平面的位置關(guān)系,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱錐中,是等邊三角形,是線段的中點(diǎn),是線段上靠近的四等分點(diǎn),平面平面.
(1)求證:;
(2)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,其中a為常數(shù),e是自然對數(shù)的底數(shù),曲線在其與y軸的交點(diǎn)處的切線記作,曲線在其與x軸的交點(diǎn)處的切線記作,且.
(1)求之間的距離;
(2)若存在x使不等式成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線過點(diǎn),傾斜角為,在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線的方程為.
(1)寫出直線的參數(shù)方程和曲線的直角坐標(biāo)方程;
(2)若直線與曲線相交于兩點(diǎn),設(shè)點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,. 對于函數(shù)、,若存在常數(shù),,使得,不等式都成立,則稱直線是函數(shù)與的分界線.
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),試探究函數(shù)與是否存在“分界線”?若存在,求出分界線方程;若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年6月25日,《固體廢物污染環(huán)境防治法(修訂草案)》初次提請全國人大常委會(huì)審議,草案對“生活垃圾污染環(huán)境的防治”進(jìn)行了專章規(guī)定.草案提出,國家推行生活垃圾分類制度.為了了解人民群眾對垃圾分類的認(rèn)識(shí),某市環(huán)保部門對該市市民進(jìn)行了一次垃圾分類網(wǎng)絡(luò)知識(shí)問卷調(diào)查,每一位市民僅有一次參加機(jī)會(huì),通過隨機(jī)抽樣,得到參加問卷調(diào)查的1000人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如表所示:
得分 | |||||||
頻數(shù) | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由頻數(shù)分布表可以認(rèn)為,此次問卷調(diào)查的得分服從正態(tài)分布,近似為這1000人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表),請利用正態(tài)分布的知識(shí)求;
(2)在(1)的條件下,市環(huán)保部門為此次參加問卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案:
①得分不低于 “的可以獲贈(zèng)2次隨機(jī)話費(fèi),得分低于的可以獲贈(zèng)1次隨機(jī)話費(fèi);
②每次獲贈(zèng)的隨機(jī)話費(fèi)和對應(yīng)的概率為:
獲贈(zèng)的隨機(jī)話費(fèi)(單位:元) | 20 | 40 |
概率 |
現(xiàn)市民小王要參加此次問卷調(diào)查,記(單位:元)為該市民參加問卷調(diào)查獲贈(zèng)的話費(fèi),求的分布列及數(shù)學(xué)期望.
附:①;②若,則,,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過軸上動(dòng)點(diǎn)引拋物線的兩條切線,,其中,為切線.
(1)若切線,的斜率分別為和,求證:為定值,并求出定值;
(2)當(dāng)最小時(shí),求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com