【題目】2019年6月25日,《固體廢物污染環(huán)境防治法(修訂草案)》初次提請全國人大常委會審議,草案對“生活垃圾污染環(huán)境的防治”進行了專章規(guī)定.草案提出,國家推行生活垃圾分類制度.為了了解人民群眾對垃圾分類的認識,某市環(huán)保部門對該市市民進行了一次垃圾分類網絡知識問卷調查,每一位市民僅有一次參加機會,通過隨機抽樣,得到參加問卷調查的1000人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計結果如表所示:
得分 | |||||||
頻數(shù) | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由頻數(shù)分布表可以認為,此次問卷調查的得分服從正態(tài)分布,近似為這1000人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點值作為代表),請利用正態(tài)分布的知識求;
(2)在(1)的條件下,市環(huán)保部門為此次參加問卷調查的市民制定如下獎勵方案:
①得分不低于 “的可以獲贈2次隨機話費,得分低于的可以獲贈1次隨機話費;
②每次獲贈的隨機話費和對應的概率為:
獲贈的隨機話費(單位:元) | 20 | 40 |
概率 |
現(xiàn)市民小王要參加此次問卷調查,記(單位:元)為該市民參加問卷調查獲贈的話費,求的分布列及數(shù)學期望.
附:①;②若,則,,,
【答案】(1)(2)分布列見解析,
【解析】
(1)先求出,再根據(jù)正態(tài)分布的知識求出即可;
(2)先求出的所有可能情況元,再求的的分布列及數(shù)學期望即可.
(1)根據(jù)題中所給的統(tǒng)計表,結合題中所給的條件,可以求得
;
又,,
所以.
(2)根據(jù)題意可以得出所得話費的可能值有20,40,60,80元,
得20元的情況為低于平均值,概率,
得40元的情況有一次機會獲得40元,兩次機會獲得2個20元,概率,
得60元的情況為兩次機會,一次40元,一次20元,概率,
得80元的情況為兩次機會,都是40元,概率,
所以變量的分布列為:
20 | 40 | 60 | 80 | |
所以其期望為.
科目:高中數(shù)學 來源: 題型:
【題目】已知直線過點,傾斜角為,在以坐標原點為極點,軸的非負半軸為極軸的極坐標系中,曲線的方程為.
(1)寫出直線的參數(shù)方程和曲線的直角坐標方程;
(2)若直線與曲線相交于兩點,設點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在三棱錐中,底面是邊長為6的正三角形,底面,且與底面所成的角為.
(1)求三棱錐的體積;
(2)若是的中點,求異面直線與所成角的大小(結果用反三角函數(shù)值表示).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地要建造一個邊長為2(單位:)的正方形市民休閑公園,將其中的區(qū)域開挖成一個池塘,如圖建立平面直角坐標系后,點的坐標為,曲線是函數(shù)圖像的一部分,過邊上一點在區(qū)域內作一次函數(shù)()的圖像,與線段交于點(點不與點重合),且線段與曲線有且只有一個公共點,四邊形為綠化風景區(qū).
(1)求證:;
(2)設點的橫坐標為,
①用表示、兩點的坐標;
②將四邊形的面積表示成關于的函數(shù),并求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某貧困縣在政府“精準扶貧”的政策指引下,充分利用自身資源,大力發(fā)展養(yǎng)茶業(yè).該縣農科所為了對比A,B兩種不同品種茶葉的產量,在試驗田上分別種植了A,B兩種茶葉各畝,所得畝產數(shù)據(jù)(單位:千克)如下:
A:,,,,,,,,,,,,,,,,,,,;
B:,,,,,,,,,,,,,,,,,,,;
(1)從A,B兩種茶葉畝產數(shù)據(jù)中各任取1個,求這兩個數(shù)據(jù)都不低于的概率;
(2)從B品種茶葉的畝產數(shù)據(jù)中任取個,記這兩個數(shù)據(jù)中不低于的個數(shù)為,求的分布列及數(shù)學期望;
(3)根據(jù)以上數(shù)據(jù),你認為選擇該縣應種植茶葉A還是茶葉B?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)打算處理一批產品,這些產品每箱100件,以箱為單位銷售.已知這批產品中每箱出現(xiàn)的廢品率只有或者兩種可能,兩種可能對應的概率均為0.5.假設該產品正品每件市場價格為100元,廢品不值錢.現(xiàn)處理價格為每箱8400元,遇到廢品不予更換.以一箱產品中正品的價格期望值作為決策依據(jù).
(1)在不開箱檢驗的情況下,判斷是否可以購買;
(2)現(xiàn)允許開箱,有放回地隨機從一箱中抽取2件產品進行檢驗.
①若此箱出現(xiàn)的廢品率為,記抽到的廢品數(shù)為,求的分布列和數(shù)學期望;
②若已發(fā)現(xiàn)在抽取檢驗的2件產品中,其中恰有一件是廢品,判斷是否可以購買.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校興趣小組在如圖所示的矩形區(qū)域內舉行機器人攔截挑戰(zhàn)賽,在處按方向釋放機器人甲,同時在處按某方向釋放機器人乙,設機器人乙在處成功攔截機器人甲.若點在矩形區(qū)域內(包含邊界),則挑戰(zhàn)成功,否則挑戰(zhàn)失。阎米,為中點,機器人乙的速度是機器人甲的速度的2倍,比賽中兩機器人均按勻速直線運動方式行進,記與的夾角為.
(1)若,足夠長,則如何設置機器人乙的釋放角度才能挑戰(zhàn)成功?(結果精確到);
(2)如何設計矩形區(qū)域的寬的長度,才能確保無論的值為多少,總可以通過設置機器人乙的釋放角度使機器人乙在矩形區(qū)域內成功攔截機器人甲?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com