【題目】某地要建造一個邊長為2(單位:)的正方形市民休閑公園,將其中的區(qū)域開挖成一個池塘,如圖建立平面直角坐標(biāo)系后,點的坐標(biāo)為,曲線是函數(shù)圖像的一部分,過邊上一點在區(qū)域內(nèi)作一次函數(shù))的圖像,與線段交于點(點不與點重合),且線段與曲線有且只有一個公共點,四邊形為綠化風(fēng)景區(qū).

1)求證:

2)設(shè)點的橫坐標(biāo)為,

①用表示、兩點的坐標(biāo);

②將四邊形的面積表示成關(guān)于的函數(shù),并求的最大值.

【答案】1)見解析(2)①M,0),N,2)②S=4﹣(t),其中0<t<1,S的最大值是4

【解析】

1)根據(jù)函數(shù)yax2過點D,求出解析式y2x2;

消去y,利用0證明結(jié)論成立;

2)①寫出點P的坐標(biāo)(t,2t2),代入直線MN的方程,用t表示出直線方程,

利用直線方程求出M、N的坐標(biāo);

②將四邊形MABN的面積S表示成關(guān)于t的函數(shù)St),

利用基本不等式即可求出S的最大值.

1)函數(shù)yax2過點D1,2),

代入計算得a2,

y2x2;

,消去y2x2kxb0

由線段MN與曲線OD有且只有一個公共點P,

=(﹣k24×2×b0

解得b;

2)設(shè)點P的橫坐標(biāo)為t,則0t1,

∴點Pt2t2);

①直線MN的方程為ykx+b,

ykx過點P,

kt2t2,

解得k4t;

y4tx2t2

y0,解得x,∴M,0);

y2,解得x,∴N,2);

②將四邊形MABN的面積S表示成關(guān)于t的函數(shù)為

SSt)=2×22×[]4﹣(t),其中0t1;

t2,當(dāng)且僅當(dāng)t,即t成立,

所以S≤4;即S的最大值是4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,底面,為線段的中點.

1)若為線段上的動點,證明:平面平面;

2)若為線段,上的動點(不含,),,三棱錐的體積是否存在最大值?如果存在,求出最大值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對任意正整數(shù),若存在數(shù)列,滿足,其中,則稱數(shù)列為正整數(shù)的生成數(shù)列,記為.

1)寫出2018的生成數(shù)列;

2)求證:對任意正整數(shù),存在唯一的生成數(shù)列;

3)求生成數(shù)列的所有項的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知分別為雙曲線的左、右焦點,點P是以為直徑的圓與C在第一象限內(nèi)的交點,若線段的中點QC的漸近線上,則C的兩條漸近線方程為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,分別為雙曲線的左、右焦點,點P是以為直徑的圓與C在第一象限內(nèi)的交點,若線段的中點QC的漸近線上,則C的兩條漸近線方程為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】移動支付、高鐵、網(wǎng)購、共享單車被稱為中國的新四大發(fā)明”.為了幫助50歲以上的中老年人更快地適應(yīng)移動支付”,某機構(gòu)通過網(wǎng)絡(luò)組織50歲以上的中老年人學(xué)習(xí)移動支付相關(guān)知識.學(xué)習(xí)結(jié)束后,每人都進行限時答卷,得分都在內(nèi).在這些答卷(有大量答卷),隨機抽出,統(tǒng)計得分繪出頻率分布直方圖如圖.

(1)求出圖中的值,并求樣本中,答卷成績在上的人數(shù);

(2)以樣本的頻率為概率,從參加這次答卷的人群中,隨機抽取,記成績在分以上()的人數(shù)為,的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在地上有同樣大小的 5 塊積木,一堆 2 個,一堆 3 個,要把積木一塊一塊的全部放到某個盒子里,每次 只能取出其中一堆最上面的一塊,則不同的取法有______種(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為平行四邊形,點O為對角線BD的中點,點E,F(xiàn)分別為棱PC,PD的中點,已知PA⊥AB,PA⊥AD.

(1)求證:直線PB∥平面OEF;

(2)求證:平面OEF⊥平面ABCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】201616日,中國物流與采購聯(lián)合會正式發(fā)布了中國倉儲指數(shù),中國倉儲指數(shù)是反映倉儲行業(yè)經(jīng)營和國內(nèi)市場主要商品供求狀況與變化趨勢的一套指數(shù)體系,如圖所示的折線圖是2019年甲企業(yè)和乙企業(yè)的倉儲指數(shù)走勢情況.根據(jù)該折線圖,下列結(jié)論中不正確的是(

A.20191月至4月甲企業(yè)的倉儲指數(shù)比乙企業(yè)的倉儲指數(shù)波動大

B.甲企業(yè)2019年的年平均倉儲指數(shù)明顯低于乙企業(yè)2019年的年平均倉儲指數(shù)

C.兩企業(yè)2019年的最大倉儲指數(shù)都出現(xiàn)在4月份

D.20197月至9月乙企業(yè)的倉儲指數(shù)的增幅高于甲企業(yè)

查看答案和解析>>

同步練習(xí)冊答案