【題目】年初的時(shí)候,國(guó)家政府工作報(bào)告明確提出, 年要堅(jiān)決打好藍(lán)天保衛(wèi)戰(zhàn),加快解決燃煤污染問(wèn)題,全面實(shí)施散煤綜合治理.實(shí)施煤改電工程后,某縣城的近六個(gè)月的月用煤量逐漸減少, 月至月的用煤量如下表所示:

月份

用煤量(千噸)

(1)由于某些原因, 中一個(gè)數(shù)據(jù)丟失,但根據(jù)月份的數(shù)據(jù)得出樣本平均值是,求出丟失的數(shù)據(jù);

(2)請(qǐng)根據(jù)月份的數(shù)據(jù),求出關(guān)于的線性回歸方程;

(3)現(xiàn)在用(2)中得到的線性回歸方程中得到的估計(jì)數(shù)據(jù)與月的實(shí)際數(shù)據(jù)的誤差來(lái)判斷該地區(qū)的改造項(xiàng)目是否達(dá)到預(yù)期,若誤差均不超過(guò),則認(rèn)為該地區(qū)的改造已經(jīng)達(dá)到預(yù)期,否則認(rèn)為改造未達(dá)預(yù)期,請(qǐng)判斷該地區(qū)的煤改電項(xiàng)目是否達(dá)預(yù)期?

(參考公式:線性回歸方程,其中

【答案】(1)4(2)(3)該地區(qū)的煤改電項(xiàng)目已經(jīng)達(dá)到預(yù)期

【解析】試題分析:(1)根據(jù)平均數(shù)計(jì)算公式得,解得丟失的數(shù)據(jù);(2)根據(jù)公式求,再根據(jù);(3)根據(jù)線性回歸方程求估計(jì)數(shù)據(jù),并與實(shí)際數(shù)據(jù)比較誤差,確定結(jié)論.

試題解析:解:(1)設(shè)丟失的數(shù)據(jù)為,則

,即丟失的數(shù)據(jù)是.

(2)由數(shù)據(jù)求得,

由公式求得

所以關(guān)于的線性回歸方程為

(3)當(dāng)時(shí), ,

同樣,當(dāng)時(shí),

所以,該地區(qū)的煤改電項(xiàng)目已經(jīng)達(dá)到預(yù)期

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)為奇函數(shù),為實(shí)常數(shù).

(1)求的值;

(2)證明:在區(qū)間內(nèi)單調(diào)遞增;

(3)若對(duì)于區(qū)間上的每一個(gè)的值,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的二次函數(shù)f(x)=ax2﹣4bx+1.設(shè)集合P={1,2,3}和Q={﹣1,1,2,3,4},分別從集合P和Q中隨機(jī)取一個(gè)數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率
(1)已知關(guān)于x的二次函數(shù)f(x)=ax2﹣4bx+1.設(shè)集合P={1,2,3}和Q={﹣1,1,2,3,4},分別從集合P和Q中隨機(jī)取一個(gè)數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率;
(2)在區(qū)間[1,5]和[2,4]上分別取一個(gè)數(shù),記為a,b,求方程 + =1表示焦點(diǎn)在x軸上且離心率小于 的橢圓的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某車間的一臺(tái)機(jī)床生產(chǎn)出一批零件,現(xiàn)從中抽取8件,將其編為 ,…, ,測(cè)量其長(zhǎng)度(單位: ),得到下表中數(shù)據(jù):

編號(hào)

長(zhǎng)度

1.49

1.46

1.51

1.51

1.53

1.51

1.47

1.51

其中長(zhǎng)度在區(qū)間內(nèi)的零件為一等品.

(1)從上述8個(gè)零件中,隨機(jī)抽取一個(gè),求這個(gè)零件為一等品的概率;

(2)從一等品零件中,隨機(jī)抽取2個(gè).

①用零件的編號(hào)列出所有可能的抽取結(jié)果;

②求這2個(gè)零件長(zhǎng)度相等的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)函數(shù)中,以π為最小正周期,且在區(qū)間 上為減函數(shù)的是( 。
A.y=2|sinx|
B.y=cosx
C.y=sin2x
D.y=|cosx|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sin2x﹣ sinxcosx+ ,g(x)=mcos(x+ )﹣m+2
(1)若對(duì)任意的x1 , x2∈[0,π],均有f(x1)≥g(x2),求m的取值范圍;
(2)若對(duì)任意的x∈[0,π],均有f(x)≥g(x),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a,b∈R,c∈[0,2π),若對(duì)于任意實(shí)數(shù)x都有2sin(3x﹣ )=asin(bx+c),則滿足條件的有序?qū)崝?shù)組(a,b,c)的組數(shù)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某研究所計(jì)劃利用“神十”宇宙飛船進(jìn)行新產(chǎn)品搭載實(shí)驗(yàn),計(jì)劃搭載若干件新產(chǎn)品A、B,該所要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實(shí)驗(yàn)費(fèi)用和預(yù)計(jì)產(chǎn)生的收益來(lái)決定具體搭載安排,有關(guān)數(shù)據(jù)如表:

每件產(chǎn)品A

每件產(chǎn)品B

研制成本、搭載
費(fèi)用之和(萬(wàn)元)

20

30

計(jì)劃最大資金額
300萬(wàn)元

產(chǎn)品重量(千克)

10

5

最大搭載重量110千克

預(yù)計(jì)收益(萬(wàn)元)

80

60

分別用x,y表示搭載新產(chǎn)品A,B的件數(shù).總收益用Z表示

(Ⅰ)用x,y列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫(huà)出相應(yīng)的平面區(qū)域;
(Ⅱ)問(wèn)分別搭載新產(chǎn)品A、B各多少件,才能使總預(yù)計(jì)收益達(dá)到最大?并求出此最大收益.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)方體ABCD﹣A1B1C1D1中,A1C1與B1D1的交點(diǎn)為O1 , AC與BD的交點(diǎn)為O.

(1)求證:直線OO1∥平面BCC1B1
(2)若AB=BC,求證:直線BO⊥平面ACC1A1

查看答案和解析>>

同步練習(xí)冊(cè)答案