【題目】已知圓O:x2+y2=2,直線.l:y=kx-2.
(1)若直線l與圓O相切,求k的值;
(2)若直線l與圓O交于不同的兩點(diǎn)A,B,當(dāng)∠AOB為銳角時(shí),求k的取值范圍;
(3)若,P是直線l上的動(dòng)點(diǎn),過(guò)P作圓O的兩條切線PC,PD,切點(diǎn)為C,D,探究:直線CD是否過(guò)定點(diǎn).
【答案】(1)k=±1;(2)(-)∪(1,);(3)直線CD過(guò)定點(diǎn)().
【解析】
(1)由直線l與圓O相切,得圓心O(0,0)到直線l的距離等于半徑r=,由此能求出k.
(2)設(shè)A,B的坐標(biāo)分別為(x1,y1),(x2,y2),將直線l:y=kx-2代入x2+y2=2,得(1+k2)x2-4kx+2=0,由此利用根的判斷式、向量的數(shù)量積公式能求出k的取值范圍.
(3)由題意知O,P,C,D四點(diǎn)共圓且在以OP為直徑的圓上,設(shè)P(t,),其方程為,C,D在圓O:x2+y2=2上,求出直線CD:(x+)t-2y-2=0,聯(lián)立方程組能求出直線CD過(guò)定點(diǎn)().
解:(1)∵圓O:x2+y2=2,直線l:y=kx-2.直線l與圓O相切,
∴圓心O(0,0)到直線l的距離等于半徑r=,
即d==,
解得k=±1.
(2)設(shè)A,B的坐標(biāo)分別為(x1,y1),(x2,y2),
將直線l:y=kx-2代入x2+y2=2,整理,得(1+k2)x2-4kx+2=0,
∴,,
△=(-4k)2-8(1+k2)>0,即k2>1,
當(dāng)∠AOB為銳角時(shí),
=x1x2+y1y2=x1x2+(kx1-2)(kx2-2)
=
=>0,
解得k2<3,
又k2>1,∴-或1<k<.
故k的取值范圍為(-)∪(1,).
(3)由題意知O,P,C,D四點(diǎn)共圓且在以OP為直徑的圓上,
設(shè)P(t,),其方程為x(x-t)+y(y)=0,
∴,
又C,D在圓O:x2+y2=2上,
兩圓作差得lCD:tx+,即(x+)t-2y-2=0,
由,得,
∴直線CD過(guò)定點(diǎn)().
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知以為圓心的圓及其上一點(diǎn).
(1)設(shè)圓與軸相切,與圓外切,且圓心在直線上,求圓的方程;
(2)設(shè)垂直于的直線與圓相交于兩點(diǎn),且,求直線的方程;
(3)設(shè)點(diǎn)滿(mǎn)足:存在圓上的兩點(diǎn),使得,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)如下表:
(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;
(2)若近幾年該農(nóng)產(chǎn)品每千克的價(jià)格 (單位:元)與年產(chǎn)量滿(mǎn)足的函數(shù)關(guān)系式為,且每年該農(nóng)產(chǎn)品都能售完.
①根據(jù)(1)中所建立的回歸方程預(yù)測(cè)該地區(qū)年該農(nóng)產(chǎn)品的產(chǎn)量;
②當(dāng)為何值時(shí),銷(xiāo)售額最大?
附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的長(zhǎng)軸長(zhǎng)為,離心率為.
(1)求橢圓的方程;
(2)過(guò)動(dòng)點(diǎn)的直線交軸于點(diǎn),交橢圓于點(diǎn),(在第一象限),且是線段的中點(diǎn).過(guò)點(diǎn)作軸的垂線交橢圓于另一點(diǎn),延長(zhǎng)交橢圓于點(diǎn).
①設(shè)直線、的斜率分別為,證明為定值;
②求直線斜率取最小值時(shí),直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列為等差數(shù)列,,,數(shù)列的前項(xiàng)和為,若對(duì)一切,恒有,則能取到的最大整數(shù)是( )
A. 6 B. 7 C. 8 D. 9
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù), 對(duì)于給定的非零實(shí)數(shù),總存在非零常數(shù),使得定義域內(nèi)的任意實(shí)數(shù),都有恒成立,此時(shí)為的假周期,函數(shù)是上的級(jí)假周期函數(shù),若函數(shù)是定義在區(qū)間內(nèi)的3級(jí)假周期且,當(dāng) 函數(shù),若, 使成立,則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的極小值;
(2)若上,使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于項(xiàng)數(shù)為()的有窮正整數(shù)數(shù)列,記(),即為中的最大值,稱(chēng)數(shù)列為數(shù)列的“創(chuàng)新數(shù)列”.比如的“創(chuàng)新數(shù)列”為.
(1)若數(shù)列的“創(chuàng)新數(shù)列”為1,2,3,4,4,寫(xiě)出所有可能的數(shù)列;
(2)設(shè)數(shù)列為數(shù)列的“創(chuàng)新數(shù)列”,滿(mǎn)足(),求證: ();
(3)設(shè)數(shù)列為數(shù)列的“創(chuàng)新數(shù)列”,數(shù)列中的項(xiàng)互不相等且所有項(xiàng)的和等于所有項(xiàng)的積,求出所有的數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是在點(diǎn)處的切線.
()求的解析式.
()求證: .
()設(shè),其中.若對(duì)恒成立,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com