【題目】對(duì)于項(xiàng)數(shù)為()的有窮正整數(shù)數(shù)列,記(),即為中的最大值,稱數(shù)列為數(shù)列的“創(chuàng)新數(shù)列”.比如的“創(chuàng)新數(shù)列”為.
(1)若數(shù)列的“創(chuàng)新數(shù)列”為1,2,3,4,4,寫出所有可能的數(shù)列;
(2)設(shè)數(shù)列為數(shù)列的“創(chuàng)新數(shù)列”,滿足(),求證: ();
(3)設(shè)數(shù)列為數(shù)列的“創(chuàng)新數(shù)列”,數(shù)列中的項(xiàng)互不相等且所有項(xiàng)的和等于所有項(xiàng)的積,求出所有的數(shù)列.
【答案】(1)見解析;(2)見解析;(3)
【解析】試題分析:(1)創(chuàng)新數(shù)列為1,2,3,4,4的所有數(shù)列,可知其首項(xiàng)是1,第二項(xiàng)是2,第三項(xiàng)是3,第四項(xiàng)是4,第五項(xiàng)是1或2或3或4,可寫出;(2)由題意易得, ,從而可得,整理即證得結(jié)論;(3)驗(yàn)證當(dāng)時(shí),不滿足題意,當(dāng)時(shí),根據(jù)而得,同理, ,而當(dāng)時(shí)不滿足題意.
試題解析:(1)所有可能的數(shù)列為; ; ;
(2)由題意知數(shù)列中. 又,所以 ,所以,即()
(3)當(dāng)時(shí),由得,又所以,不滿足題意;當(dāng)時(shí),由題意知數(shù)列中,又
當(dāng)時(shí)此時(shí), 而,所以等式成立;
當(dāng)時(shí)此時(shí), 而,所以等式成立;
當(dāng), 得,此時(shí)數(shù)列為.
當(dāng)時(shí), ,而,所以不存在滿足題意的數(shù)列.綜上數(shù)列依次為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),(i)求曲線在點(diǎn)處的切線方程;
(ii)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓O:x2+y2=2,直線.l:y=kx-2.
(1)若直線l與圓O相切,求k的值;
(2)若直線l與圓O交于不同的兩點(diǎn)A,B,當(dāng)∠AOB為銳角時(shí),求k的取值范圍;
(3)若,P是直線l上的動(dòng)點(diǎn),過P作圓O的兩條切線PC,PD,切點(diǎn)為C,D,探究:直線CD是否過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從甲、乙兩名學(xué)生中選拔一人參加射箭比賽,為此需要對(duì)他們的射箭水平進(jìn)行測(cè)試.現(xiàn)這兩名學(xué)生在相同條件下各射箭10次,命中的環(huán)數(shù)如下:
甲 | 8 | 9 | 7 | 9 | 7 | 6 | 10 | 10 | 8 | 6 |
乙 | 10 | 9 | 8 | 6 | 8 | 7 | 9 | 7 | 8 | 8 |
(1)計(jì)算甲、乙兩人射箭命中環(huán)數(shù)的平均數(shù)和標(biāo)準(zhǔn)差;
(2)比較兩個(gè)人的成績(jī),然后決定選擇哪名學(xué)生參加射箭比賽.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記,其中為函數(shù)的導(dǎo)數(shù)若對(duì)于,,則稱函數(shù)為D上的凸函數(shù).
求證:函數(shù)是定義域上的凸函數(shù);
已知函數(shù),為上的凸函數(shù).
求實(shí)數(shù)a的取值范圍;
求函數(shù),的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量
(1)若分別表示將一枚質(zhì)地均勻的正方體骰子(六個(gè)面的點(diǎn)數(shù)分別為1,2,3,4,5,6)先后拋擲兩次時(shí)第一次,第二次出現(xiàn)的點(diǎn)數(shù),求滿足的概率;
(2)若在連續(xù)區(qū)間[1,6]上取值,求滿足的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班同學(xué)利用國(guó)慶節(jié)進(jìn)行社會(huì)實(shí)踐,對(duì)歲的人群隨機(jī)抽取人進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,若生活習(xí)慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:
組數(shù) | 分組 | 低碳族的人數(shù) | 占本組的頻率 |
第一組 | 120 | 0.6 | |
第二組 | 195 | ||
第三組 | 100 | 0.5 | |
第四組 | 0.4 | ||
第五組 | 30 | 0.3 | |
第六組 | 15 | 0.3 |
(1)補(bǔ)全頻率分布直方圖并求、、的值;
(2)從歲年齡段的“低碳族”中采用分層抽樣法抽取18人參加戶外低碳體驗(yàn)活動(dòng),如何抽。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的部分圖象如圖所示,且相鄰的兩個(gè)最值點(diǎn)的距離為.
(1)求函數(shù)的解析式;
(2)若將函數(shù)的圖象向左平移1個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,關(guān)于的不等式在上有解,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com