曲線C是平面內(nèi)與兩個(gè)定點(diǎn)F1(-1,0)和F2(1,0)的距離的積等于常數(shù)a2(a>1)的點(diǎn)的軌跡.給出下列三個(gè)結(jié)論:
①曲線C過(guò)坐標(biāo)原點(diǎn);
②曲線C關(guān)于坐標(biāo)原點(diǎn)對(duì)稱;
③若點(diǎn)P在曲線C上,則△F1PF2的面積不大于a2
其中,所有正確結(jié)論的序號(hào)是________.
②③
設(shè)P(x,y)為曲線C上任意一點(diǎn),
則由|PF1|·|PF2|=a2,得
·=a2
把(0,0)代入方程可得1=a2,與a>1矛盾,故①不正確;
當(dāng)M(x,y)在曲線C上時(shí),點(diǎn)M關(guān)于原點(diǎn)的對(duì)稱點(diǎn)M′(-x,-y)也滿足方程,
故曲線C關(guān)于原點(diǎn)對(duì)稱,故②正確;
S△F1PF2|PF1||PF2|sin∠F1PF2a2sin∠F1PF2a2,故③正確.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知拋物線,在此拋物線上一點(diǎn)到焦點(diǎn)的距離是3.
(1)求此拋物線的方程;
(2)拋物線的準(zhǔn)線與軸交于點(diǎn),過(guò)點(diǎn)斜率為的直線與拋物線交于、兩點(diǎn).是否存在這樣的,使得拋物線上總存在點(diǎn)滿足,若存在,求的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)
如圖,已知拋物線,過(guò)點(diǎn)任作一直線與相交于兩點(diǎn),過(guò)點(diǎn)軸的平行線與直線相交于點(diǎn)為坐標(biāo)原點(diǎn)).

(1)證明:動(dòng)點(diǎn)在定直線上;
(2)作的任意一條切線(不含軸)與直線相交于點(diǎn),與(1)中的定直線相交于點(diǎn),證明:為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線x2=8y的焦點(diǎn)坐標(biāo)是( 。
A.(0,2)B.(0,-2)C.(4,0)D.(-4,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,己知矩形ABCD的兩個(gè)頂點(diǎn)A、D位于x軸上,另兩個(gè)頂點(diǎn)B、C位于拋物線y=4-x2在x軸上方的曲線上,求這個(gè)矩形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,設(shè)點(diǎn)A(x0,y0)為拋物線y2=
x
2
上位于第一象限內(nèi)的一動(dòng)點(diǎn),點(diǎn)B(0,y1)在y軸正半軸上,且|OA|=|OB|,直線AB交x軸于點(diǎn)P(x2,0).
(Ⅰ)試用x0表示y1
(Ⅱ)試用x0表示x2;
(Ⅲ)當(dāng)點(diǎn)A沿拋物線無(wú)限趨近于原點(diǎn)O時(shí),求點(diǎn)P的極限坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:)的焦距為4,其短軸的兩個(gè)端點(diǎn)與長(zhǎng)軸的一個(gè)端點(diǎn)構(gòu)成正三角形.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)F為橢圓C的左焦點(diǎn),T為直線上任意一點(diǎn),過(guò)F作TF的垂線交橢圓C于點(diǎn)P,Q.
(i)證明:OT平分線段PQ(其中O為坐標(biāo)原點(diǎn));
(ii)當(dāng)最小時(shí),求點(diǎn)T的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線L:與橢圓E: 相交于A,B兩點(diǎn),該橢圓上存在點(diǎn)P,使得
△ PAB的面積等于3,則這樣的點(diǎn)P共有(   )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,F(xiàn)是拋物線C:x2=2py(p>0)的焦點(diǎn),M是拋物線C上位于第一象限內(nèi)的任意一點(diǎn),過(guò)M,F(xiàn),O三點(diǎn)的圓的圓心為Q,點(diǎn)Q到拋物線C的準(zhǔn)線的距離為.
(1)求拋物線C的方程;
(2)是否存在點(diǎn)M,使得直線MQ與拋物線C相切于點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案