精英家教網 > 高中數學 > 題目詳情
已知橢圓C:)的焦距為4,其短軸的兩個端點與長軸的一個端點構成正三角形.
(1)求橢圓C的標準方程;
(2)設F為橢圓C的左焦點,T為直線上任意一點,過F作TF的垂線交橢圓C于點P,Q.
(i)證明:OT平分線段PQ(其中O為坐標原點);
(ii)當最小時,求點T的坐標.
(1) ;(2)

試題分析:(1)因為焦距為4,所以,又,由此可求出的值,從而求得橢圓的方程.(2)橢圓方程化為.設PQ的方程為,代入橢圓方程得:.(ⅰ)設PQ的中點為,求出,只要,即證得OT平分線段PQ.(ⅱ)可用表示出PQ,TF可得:.
再根據取等號的條件,可得T的坐標.
試題解答:(1),又.
(2)橢圓方程化為.
(ⅰ)設PQ的方程為,代入橢圓方程得:.
設PQ的中點為,則
又TF的方程為,則
所以,即OT過PQ的中點,即OT平分線段PQ.
(ⅱ),又,所以
.
時取等號,此時T的坐標為.
【考點定位】1、橢圓的方程;2、直線與圓錐曲線;3、最值問題.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

拋物線x2=ay的準線方程為y=2,則a的值為(  )
A.8B.-8C.
1
8
D.-
1
8

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

直線l:y=x+b與拋物線C:x2=4y相切于點A.
(Ⅰ)求實數b的值,及點A的坐標;
(Ⅱ)求過點B(0,-1)的拋物線C的切線方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

曲線C是平面內與兩個定點F1(-1,0)和F2(1,0)的距離的積等于常數a2(a>1)的點的軌跡.給出下列三個結論:
①曲線C過坐標原點;
②曲線C關于坐標原點對稱;
③若點P在曲線C上,則△F1PF2的面積不大于a2
其中,所有正確結論的序號是________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

過雙曲線的右頂點作軸的垂線與的一條漸近線相交于.若以的右焦點為圓心、半徑為4的圓經過,則雙曲線的方程為(  )
      B.    C.      D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知的三個頂點在拋物線上,為拋物線的焦點,點的中點,;
(1)若,求點的坐標;
(2)求面積的最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,設橢圓的左、右焦點分別為,點在橢圓上,,,的面積為.
(1)求該橢圓的標準方程;
(2)設圓心在軸上的圓與橢圓在軸的上方有兩個交點,且圓在這兩個交點處的兩條切線相互垂直并分別過不同的焦點,求圓的半徑..

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的右焦點為,離心率,是橢圓上的動點.
(1)求橢圓標準方程;
(2)若直線的斜率乘積,動點滿足,(其中實數為常數).問是否存在兩個定點,使得?若存在,求的坐標及的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知、為橢圓的左右焦點,點為其上一點,且有
.
(1)求橢圓的標準方程;
(2)過的直線與橢圓交于、兩點,過平行的直線與橢圓交于、兩點,求四邊形的面積的最大值.

查看答案和解析>>

同步練習冊答案