如圖,設橢圓的左、右焦點分別為,點在橢圓上,,的面積為.
(1)求該橢圓的標準方程;
(2)設圓心在軸上的圓與橢圓在軸的上方有兩個交點,且圓在這兩個交點處的兩條切線相互垂直并分別過不同的焦點,求圓的半徑..
(1);(2)

試題分析:(1)由題設知其中
,結合條件的面積為,可求的值,再利用橢圓的定義和勾股定理即可求得的值,從而確定橢圓的標準方程;
(2)設圓心在軸上的圓與橢圓在軸的上方有兩個交點為由圓的對稱性可知
,利用在圓上及確定交點的坐標,進而得到圓的方程.
解:(1)設,其中

從而.
從而,由,因此.
所以,故
因此,所求橢圓的標準方程為:

(2)如答(21)圖,設圓心在軸上的圓與橢圓相交,是兩個交點,,,是圓的切線,且由圓和橢圓的對稱性,易知
,
由(1)知,所以,再由,由橢圓方程得,即,解得.
時,重合,此時題設要求的圓不存在.
時,過分別與,垂直的直線的交點即為圓心.
,是圓的切線,且,知,又故圓的半徑
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,已知拋物線,在此拋物線上一點到焦點的距離是3.
(1)求此拋物線的方程;
(2)拋物線的準線與軸交于點,過點斜率為的直線與拋物線交于兩點.是否存在這樣的,使得拋物線上總存在點滿足,若存在,求的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若拋物線y2=2px(p>0)的焦點與橢圓
x2
6
+
y2
2
=1
的右焦點重合,則p=______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:)的焦距為4,其短軸的兩個端點與長軸的一個端點構成正三角形.
(1)求橢圓C的標準方程;
(2)設F為橢圓C的左焦點,T為直線上任意一點,過F作TF的垂線交橢圓C于點P,Q.
(i)證明:OT平分線段PQ(其中O為坐標原點);
(ii)當最小時,求點T的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

為拋物線的焦點,過且傾斜角為的直線交,兩點,則 ( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線L:與橢圓E: 相交于A,B兩點,該橢圓上存在點P,使得
△ PAB的面積等于3,則這樣的點P共有(   )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線的焦點到準線的距離為.過點
作直線交拋物線兩點(在第一象限內).
(1)若與焦點重合,且.求直線的方程;
(2)設關于軸的對稱點為.直線軸于. 且.求點到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖為橢圓C:的左、右焦點,D,E是橢圓的兩個頂點,橢圓的離心率,的面積為.若點在橢圓C上,則點稱為點M的一個“橢圓”,直線與橢圓交于A,B兩點,A,B兩點的“橢圓”分別為P,Q.

(1)求橢圓C的標準方程;
(2)問是否存在過左焦點的直線,使得以PQ為直徑的圓經(jīng)過坐標原點?若存在,求出該直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若拋物線的焦點是雙曲線的一個焦點,則正數(shù)等于(    )
A.B.C.D.

查看答案和解析>>

同步練習冊答案