【題目】設(shè)f(x)=ax2+(1-a)x+a-3.
(1)若不等式f(x)≥-3對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)a的取值范圍;
(2)解關(guān)于x的不等式f(x)<a-2(a∈R).
【答案】(1) [,+∞).(2)答案不唯一,見(jiàn)解析
【解析】
(1)根據(jù)條件不等式f(x)≥-3對(duì)一切實(shí)數(shù)x恒成立,轉(zhuǎn)化為ax2+(1-a)x+a≥0對(duì)一切實(shí)數(shù)x恒成立;分a=0和a≠0兩種情況討論,即可得出結(jié)論;
(2)不等式f(x)<a-2代入化簡(jiǎn)得ax2+(1-a)x-1<0,對(duì)a的取值進(jìn)行分類討論,即可得不等式的解集.
解:(1)由條件知不等式f(x)≥-3對(duì)一切實(shí)數(shù)x恒成立;
即ax2+(1-a)x+a≥0對(duì)一切實(shí)數(shù)x恒成立;
當(dāng)a=0時(shí),x≥0,顯然不能恒成立;
當(dāng)a≠0時(shí),要使得ax2+(1-a)x+a≥0對(duì)一切實(shí)數(shù)x恒成立,
滿足,解得a≥;
綜上述,實(shí)數(shù)a的取值范圍是[,+∞).
(2)由條件化簡(jiǎn)不等式f(x)<a-2,
得ax2+(1-a)x-1<0,
①當(dāng)a=0時(shí),不等式等價(jià)于:x-1<0,∴x<1,
不等式的解集為(-∞,1);
當(dāng)a≠0時(shí),方程(x-1)(ax+1)=0有兩個(gè)實(shí)根,1和;
②當(dāng)a>0時(shí),1>,不等式等價(jià)于(x-1)(x+)<0,
∴不等式的解集為(,1);
③當(dāng)a<0時(shí),不等式等價(jià)于(x-1)(x+)>0,
當(dāng)-1<a<0時(shí),1<,
不等式的解集為(-∞,1)∪(-,+∞);
當(dāng)a=-1時(shí),1=,不等式的解集為{x|x≠-1}.
當(dāng)a<-1時(shí),1>,
不等式的解集為(-∞,)∪(1,+∞);
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知梯形中,,,,,是上的點(diǎn),是的中點(diǎn),沿將梯形折起,使平面平面.
(1)當(dāng)時(shí),求證:;
(2)記以為頂點(diǎn)的三棱錐的體積為,求的最大值;
(3)當(dāng)取得最大值時(shí),求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知半圓:,、分別為半圓與軸的左、右交點(diǎn),直線過(guò)點(diǎn)且與軸垂直,點(diǎn)在直線上,縱坐標(biāo)為,若在半圓上存在點(diǎn)使,則的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上有2個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.(注)
(2)設(shè),若函數(shù)恰有兩個(gè)不同的極值點(diǎn),,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱中,,,,且平面⊥平面.
(1)求三棱柱的體積.
(2)點(diǎn)在棱上,且與平面所成角的余弦值為(),求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某開(kāi)發(fā)商用9000萬(wàn)元在市區(qū)購(gòu)買一塊土地建一幢寫(xiě)字樓,規(guī)劃要求寫(xiě)字樓每層建筑面積為2000平方米.已知該寫(xiě)字樓第一層的建筑費(fèi)用為每平方米4000元,從第二層開(kāi)始,每一層的建筑費(fèi)用比其下面一層每平方米增加100元.
(1)若該寫(xiě)字樓共x層,總開(kāi)發(fā)費(fèi)用為y萬(wàn)元,求函數(shù)y=f(x)的表達(dá)式;(總開(kāi)發(fā)費(fèi)用=總建筑費(fèi)用+購(gòu)地費(fèi)用)
(2)要使整幢寫(xiě)字樓每平方米的平均開(kāi)發(fā)費(fèi)用最低,該寫(xiě)字樓應(yīng)建為多少層?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)若在其定義域內(nèi)為單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍;
(2)設(shè),且,若在上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍;
(3)求證:對(duì)任意的正整數(shù),都有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為,離心率為,是橢圓上的一個(gè)動(dòng)點(diǎn),且面積的最大值為.
(1)求橢圓的方程;
(2)設(shè)直線斜率為,且與橢圓的另一個(gè)交點(diǎn)為,是否存在點(diǎn),使得若存在,求的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C過(guò)點(diǎn)M(0,-2)、N(3,1),且圓心C在直線x+2y+1=0上.
(1)求圓C的方程;
(2)設(shè)直線ax-y+1=0與圓C交于A,B兩點(diǎn),是否存在實(shí)數(shù)a,使得過(guò)點(diǎn)P(2,0)的直線l垂直平分弦AB?若存在,求出實(shí)數(shù)a的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com