【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)),設(shè)的交點為,當(dāng)變化時, 的軌跡為曲線.

(1)寫出的普遍方程及參數(shù)方程;

(2)以坐標(biāo)原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,設(shè)曲線的極坐標(biāo)方程為, 為曲線上的動點,求點的距離的最小值.

【答案】(1)詳見解析;(2) .

【解析】試題分析:先把兩條直線的參數(shù)方程化為普通方程,然后利用兩條直線的方程削去參數(shù)k,得出點P的軌跡方程,再把橢圓的直角坐標(biāo)方程改為參數(shù)方程;把曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,得到直線的方程,利用橢圓的參數(shù)方程巧設(shè)點Q的坐標(biāo),寫出點到直線的距離,利用三角函數(shù)求最值.

試題解析:

(Ⅰ)將參數(shù)方程轉(zhuǎn)化為一般方程

,

,

×可得:

的軌跡方程為 的普通方程為

的參數(shù)方程為為參數(shù)).

(Ⅱ)由曲線 得:

即曲線的直角坐標(biāo)方程為:

知曲線與直線無公共點,

曲線上的點到直線的距離為

所以當(dāng)時, 的最小值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1),上的單調(diào)區(qū)間

(2), 均恒成立求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線過點,圓:,直線與圓交于兩點.

) 求直線的方程;

)求直線的斜率的取值范圍;

(Ⅲ)是否存在過點且垂直平分弦的直線?若存在,求直線斜率的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(14分)在四棱錐PABCD中,ABCACD=90°,BACCAD=60°PA平面ABCD,EPD的中點,PA=2AB=2.

)求四棱錐PABCD的體積V;

)若FPC的中點,求證PC平面AEF;

)求證CE平面PAB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)),設(shè)的交點為,當(dāng)變化時, 的軌跡為曲線.

(1)寫出的普遍方程及參數(shù)方程;

(2)以坐標(biāo)原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,設(shè)曲線的極坐標(biāo)方程為 為曲線上的動點,求點的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)),設(shè)的交點為,當(dāng)變化時, 的軌跡為曲線.

(1)寫出的普遍方程及參數(shù)方程;

(2)以坐標(biāo)原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,設(shè)曲線的極坐標(biāo)方程為, 為曲線上的動點,求點的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為研究某種圖書每冊的成本費(元)與印刷數(shù)(千冊)的關(guān)系,收集了一些數(shù)據(jù)并作了初步處理,得到了下面的散點圖及一些統(tǒng)計量的值.

表中, .

(1)根據(jù)散點圖判斷: 哪一個更適宜作為每冊成本費(元)與印刷數(shù)(千冊)的回歸方程類型?(只要求給出判斷,不必說明理由)

(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程(回歸系數(shù)的結(jié)果精確到0.01);

(3)若每冊書定價為10元,則至少應(yīng)該印刷多少千冊才能使銷售利潤不低于78840元?(假設(shè)能夠全部售出,結(jié)果精確到1)

(附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在區(qū)間上存在三個不同的實數(shù),使得以為邊長的三角形是直角三角形,則的取值范圍是(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某校6個學(xué)生的數(shù)學(xué)和物理成績?nèi)缦卤恚?/span>

學(xué)生的編號

1

2

3

4

5

6

數(shù)學(xué)

89

87

79

81

78

90

物理

79

75

77

73

72

74

(1)若在本次考試中,規(guī)定數(shù)學(xué)在80分以上(包括80分)且物理在75分以上(包括75分)的學(xué)生為理科小能手.從這6個學(xué)生中抽出2個學(xué)生,設(shè)表示理科小能手的人數(shù),求的分布列和數(shù)學(xué)期望;

(2)通過大量事實證明發(fā)現(xiàn),一個學(xué)生的數(shù)學(xué)成績和物理成績具有很強的線性相關(guān)關(guān)系,在上述表格是正確的前提下,用表示數(shù)學(xué)成績,用表示物理成績,求的回歸方程.

參考數(shù)據(jù)和公式:,其中.

查看答案和解析>>

同步練習(xí)冊答案