【題目】拋物線的焦點為F,圓,點為拋物線上一動點.已知當的面積為.
(I)求拋物線方程;
(II)若,過P做圓C的兩條切線分別交y軸于M,N兩點,求面積的最小值,并求出此時P點坐標.
【答案】(Ⅰ) (II)的最小值為2,
【解析】
(Ⅰ)根據(jù)題意可得x02+(y0)2,|1||x0|,x02=2py0,即可解得p=1;
(II)設P(x0,y0),M(0,b),N(0,c),且b>c,則直線PM的方程可得,由題設知,圓心(0,1)到直線PM的距離為1,把x0,y0代入化簡整理可得(2y0﹣1)b2﹣2y0b﹣y02=0,同理可得(2y0﹣1)c2﹣2y0c﹣y02=0,進而可知b,c為(2y0﹣1)x2﹣2y0x﹣y02=0的兩根,根據(jù)求根公式,可求得b﹣c,進而可得△PMN的面積的表達式,根據(jù)均值不等式可得
(Ⅰ)由題意知:
,
,
,
,
拋物線方程為.
(Ⅱ)設過點P且與圓C相切的直線的方程為
令x=0,得
切線與x軸的交點為
而,
整理得
,
設兩切線斜率為,
則
,
,
,
,
則,
令,則
,
而
當且僅當,即t=1時,“=”成立.
此時,
的最小值為2,
科目:高中數(shù)學 來源: 題型:
【題目】某醫(yī)療器械公司在全國共有個銷售點,總公司每年會根據(jù)每個銷售點的年銷量進行評價分析.規(guī)定每個銷售點的年銷售任務為一萬四千臺器械.根據(jù)這個銷售點的年銷量繪制出如下的頻率分布直方圖.
(1)完成年銷售任務的銷售點有多少個?
(2)若用分層抽樣的方法從這個銷售點中抽取容量為的樣本,求該五組,,,,,(單位:千臺)中每組分別應抽取的銷售點數(shù)量.
(3)在(2)的條件下,從該樣本中完成年銷售任務的銷售點中隨機選取個,求這兩個銷售點不在同一組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點,圓:與軸的正半軸的交點是,過點的直線與圓交于不同的兩點.
(1)若直線與軸交于,且,求直線的方程;
(2)設直線,的斜率分別是,,求的值;
(3)設的中點為,點,若,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1, ,其中n∈N*.
(1)設,求證:數(shù)列{bn}是等差數(shù)列,并求出{an}的通項公式.
(2)設,數(shù)列{cncn+2}的前n項和為Tn,是否存在正整數(shù)m,使得對于n∈N*,恒成立?若存在,求出m的最小值;若不存在,請說明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司共有10條產品生產線,不超過5條生產線正常工作時,每條生產線每天純利潤為1100元,超過5條生產線正確工作時,超過的生產線每條純利潤為800元,原生產線利潤保持不變.未開工的生產線每條每天的保養(yǎng)等各種費用共100元.用x表示每天正常工作的生產線條數(shù),用y表示公司每天的純利潤.
(I)寫出y關于x的函數(shù)關系式,并求出純利潤為7700元時工作的生產線條數(shù).
(II)為保證新開的生產線正常工作,需對新開的生產線進行檢測,現(xiàn)從該生產線上隨機抽取100件產品,測量產品數(shù)據(jù),用統(tǒng)計方法得到樣本的平均數(shù),標準差,繪制如圖所示的頻率分布直方圖,以頻率值作為概率估計值.為檢測該生產線生產狀況,現(xiàn)從加工的產品中任意抽取一件,記其數(shù)據(jù)為X,依據(jù)以下不等式評判(P表示對應事件的概率)
①
②
③
評判規(guī)則為:若至少滿足以上兩個不等式,則生產狀況為優(yōu),無需檢修;否則需檢修生產線.試判斷該生產線是否需要檢修.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)安排甲、乙、丙、丁、戊5名同學參加2022年杭州亞運會志愿者服務活動,有翻譯、導游、禮儀、司機四項工作可以安排,以下說法正確的是( )
A.每人都安排一項工作的不同方法數(shù)為54
B.每人都安排一項工作,每項工作至少有一人參加,則不同的方法數(shù)為
C.如果司機工作不安排,其余三項工作至少安排一人,則這5名同學全部被安排的不同方法數(shù)為
D.每人都安排一項工作,每項工作至少有一人參加,甲、乙不會開車但能從事其他三項工作,丙、丁、戊都能勝任四項工作,則不同安排方案的種數(shù)是
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有一塊半圓形的空地,直徑米,政府計劃在空地上建一個形狀為等腰梯形的花圃,如圖所示,其中為圓心,,在半圓上,其余為綠化部分,設.
(1)記花圃的面積為,求的最大值;
(2)若花圃的造價為10元/米,在花圃的邊、處鋪設具有美化效果的灌溉管道,鋪設費用為500元/米,兩腰、不鋪設,求滿足什么條件時,會使總造價最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來,共享單車已經悄然進入了廣大市民的日常生活,并慢慢改變了人們的出行方式.為了更好地服務民眾,某共享單車公司在其官方中設置了用戶評價反饋系統(tǒng),以了解用戶對車輛狀況和優(yōu)惠活動的評價.現(xiàn)從評價系統(tǒng)中選出條較為詳細的評價信息進行統(tǒng)計,車輛狀況的優(yōu)惠活動評價的列聯(lián)表如下:
對優(yōu)惠活動好評 | 對優(yōu)惠活動不滿意 | 合計 | |
對車輛狀況好評 | |||
對車輛狀況不滿意 | |||
合計 |
(1)能否在犯錯誤的概率不超過的前提下認為優(yōu)惠活動好評與車輛狀況好評之間有關系?
(2)為了回饋用戶,公司通過向用戶隨機派送騎行券.用戶可以將騎行券用于騎行付費,也可以通過轉贈給好友.某用戶共獲得了張騎行券,其中只有張是一元券.現(xiàn)該用戶從這張騎行券中隨機選取張轉贈給好友,求選取的張中至少有張是一元券的概率.
參考數(shù)據(jù):
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】四色猜想是世界三大數(shù)學猜想之一,1976年數(shù)學家阿佩爾與哈肯證明,稱為四色定理.其內容是:“任意一張平面地圖只用四種顏色就能使具有共同邊界的國家涂上不同的顏色.”用數(shù)學語言表示為“將平面任意地細分為不相重疊的區(qū)域,每一個區(qū)域總可以用,,,四個數(shù)字之一標記,而不會使相鄰的兩個區(qū)域得到相同的數(shù)字.”如圖,網格紙上小正方形的邊長為,粗實線圍城的各區(qū)域上分別標有數(shù)字,,,的四色地圖符合四色定理,區(qū)域和區(qū)域標記的數(shù)字丟失.若在該四色地圖上隨機取一點,則恰好取在標記為的區(qū)域的概率所有可能值中,最大的是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com