【題目】函數(shù)
(1)求的值;
(2)時(shí),求的取值范圍;
(3)函數(shù)的性質(zhì)通常指的是函數(shù)的定義域、值域、單調(diào)性、周期性、奇偶性等,請(qǐng)你探究函數(shù)其中的三個(gè)性質(zhì)(直接寫(xiě)出結(jié)論即可)
【答案】(1)(2)(3)①定義域②值域③偶函數(shù)④⑤在單調(diào)遞增,在單調(diào)遞減(寫(xiě)出任意三個(gè)即可)
【解析】
(1)把所給的自變量的值代入函數(shù)式,根據(jù)誘導(dǎo)公式化簡(jiǎn)整理出結(jié)果.
(2)對(duì)函數(shù)式進(jìn)行整理,得到y=Asin(ωx+φ)的形式,根據(jù)所給的角的范圍寫(xiě)出ωx+φ的范圍,根據(jù)三角函數(shù)的圖象得到函數(shù)的值域.
(3)根據(jù)上一問(wèn)整理出的函數(shù)的解析式,得到函數(shù)的定義域、值域、周期性、奇偶性、單調(diào)性等.
(1).
(2)當(dāng)時(shí),,則sin2x≥0,cos2x≥0.
∴
又∵
∴∴
∴當(dāng)時(shí),f(x)的取值范圍為.
(3)①f(x)的定義域?yàn)?/span>R;
②∵f(﹣x)=|sin(﹣2x)|+|cos(﹣2x)|=|sin2x|+|cos2x|=f(x)∴f(x)為偶函數(shù).
③∵,
∴f(x)是周期為的周期函數(shù);
④由(2)可知,當(dāng)時(shí),,
∴值域?yàn)?/span>.
⑤可作出f(x)圖象,如圖所示:
由圖象可知f(x)的增區(qū)間為(k∈Z),
減區(qū)間為(k∈Z) (寫(xiě)出任意三個(gè)即可)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在上的函數(shù)滿(mǎn)足:①(為正常數(shù));②當(dāng)時(shí),,若的圖象上所有極大值對(duì)應(yīng)的點(diǎn)均落在同一條直線上,則___.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高校在2016年的自主招生考試成績(jī)中隨機(jī)抽取100名學(xué)生的筆試成績(jī),按成績(jī)分組,得到的頻率分布表如下表所示.
組號(hào) | 分組 | 頻數(shù) | 頻率 |
第1組 | 5 | 0.050 | |
第2組 | n | 0.350 | |
第3組 | 30 | p | |
第4組 | 20 | 0.200 | |
第5組 | 10 | 0.100 | |
合計(jì) | 100 | 1.000 |
(1)求頻率分布表中n,p的值,并估計(jì)該組數(shù)據(jù)的中位數(shù)(保留l位小數(shù));
(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績(jī)高的第3、4、5組中用分層抽樣的方法抽取6名學(xué)生進(jìn)入第二輪面試,則第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試?
(3)在(2)的前提下,學(xué)校決定從6名學(xué)生中隨機(jī)抽取2名學(xué)生接受甲考官的面試,求第4組至少有1名學(xué)生被甲考官面試的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且滿(mǎn)足:
(1)證明:是等比數(shù)列,并求數(shù)列的通項(xiàng)公式.
(2)設(shè),若數(shù)列是等差數(shù)列,求實(shí)數(shù)的值;
(3)在(2)的條件下,設(shè) 記數(shù)列的前項(xiàng)和為,若對(duì)任意的存在實(shí)數(shù),使得,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】斐波那契數(shù)列,又稱(chēng)黃金分割數(shù)列.因數(shù)學(xué)家列昂納多·斐波那契以兔子繁殖為例子而引入,故又稱(chēng)為“兔子數(shù)列”,指的是這樣一個(gè)數(shù)列:1、1、2、3、5、8、13、21、34、…..,在數(shù)學(xué)上,斐波那契數(shù)列以如下被遞推的方法定義:,,.這種遞推方法適合研究生活中很多問(wèn)題.比如:一六八中學(xué)食堂一樓到二樓有15個(gè)臺(tái)階,某同學(xué)一步可以跨一個(gè)或者兩個(gè)臺(tái)階,則他到二樓就餐有( )種上樓方法.
A.377B.610C.987D.1597
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一個(gè)問(wèn)題:今有牛、馬、羊食人苗,苗主責(zé)之粟五斗,羊主曰:“我羊食半馬、“馬主曰:“我馬食半牛,”今欲衰償之,問(wèn)各出幾何?此問(wèn)題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟、羊主人說(shuō):“我羊所吃的禾苗只有馬的一半,”馬主人說(shuō):“我馬所吃的禾苗只有牛的一半,“打算按此比例償還,他們各應(yīng)償還多少?該問(wèn)題中,1斗為10升,則馬主人應(yīng)償還( )升粟?
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法錯(cuò)誤的是( )
A.命題“若,則”的逆否命題為:“若,則”
B.“”是“”的充分而不必要條件
C.若且為假命題,則、均為假命題
D.命題“存在,使得”,則非“任意,均有”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)通過(guò)調(diào)查問(wèn)卷(滿(mǎn)分50分)的形式對(duì)本企業(yè)900名員工的工作滿(mǎn)意程度進(jìn)行調(diào)查,并隨機(jī)抽取了其中30名員工(16名女工,14名男工)的得分,如下表:
女 | 47 | 36 | 32 | 48 | 34 | 44 | 43 | 47 | 46 | 41 | 43 | 42 | 50 | 43 | 35 | 49 |
男 | 37 | 35 | 34 | 43 | 46 | 36 | 38 | 40 | 39 | 32 | 48 | 33 | 40 | 34 |
(1)根據(jù)以上數(shù)據(jù),估計(jì)該企業(yè)得分大于45分的員工人數(shù);
(2)現(xiàn)用計(jì)算器求得這30名員工的平均得分為40.5分,若規(guī)定大于平局得分為 “滿(mǎn)意”,否則為 “不滿(mǎn)意”,請(qǐng)完成下列表格:
“滿(mǎn)意”的人數(shù) | “不滿(mǎn)意”的人數(shù) | 合計(jì) | |
女員工 | 16 | ||
男員工 | 14 | ||
合計(jì) | 30 |
(3)根據(jù)上述表中數(shù)據(jù),利用獨(dú)立性檢驗(yàn)的方法判斷,能否在犯錯(cuò)誤的概率不超過(guò)1%的前提下,認(rèn)為該企業(yè)員工“性別”與“工作是否滿(mǎn)意”有關(guān)?
參考數(shù)據(jù):
P(K2K) | 0.10 | 0.050 | 0.025 | 0.010 | 0.001 |
K | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線的焦點(diǎn)是,、是曲線上不同兩點(diǎn),且存在實(shí)數(shù)使得,曲線在點(diǎn)、處的兩條切線相交于點(diǎn).
(1)求點(diǎn)的軌跡方程;
(2)點(diǎn)在軸上,以為直徑的圓與的另一交點(diǎn)恰好是的中點(diǎn),當(dāng)時(shí),求四邊形的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com