【題目】已知,

1判斷的奇偶性并說明理由;2求證:函數(shù)上是增函數(shù);

3,求實(shí)數(shù)的取值范圍。

【答案】1奇函數(shù)2詳見解析3

【解析】

試題分析:1判斷函數(shù)奇偶性首先判斷定義域是否對稱,再判斷的關(guān)系,從而確定函數(shù)奇偶性;2證明函數(shù)單調(diào)性一般采用定義法,首先假設(shè),通過判斷的正負(fù)號確定函數(shù)的單調(diào)性;3借助于單調(diào)性與奇偶性將不等式化簡為,解不等式可得到實(shí)數(shù)的取值范圍

試題解析:1奇函數(shù)

,所以函數(shù)是奇函數(shù) ……5

2證明:設(shè),為區(qū)間上的任意兩個值,且

= ……8

因?yàn)?/span> 所以

所以函數(shù)上是增函數(shù) …………………10

3解:因?yàn)?/span>為奇函數(shù)

所以由

因?yàn)楹瘮?shù)上是增函數(shù)

所以 13 ……15

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在畫程序框圖時,如果一個框圖需要分開來畫,那么要在斷開處畫上(  )

A. 流程線 B. 注釋框 C. 判斷框 D. 連接點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線l1過點(diǎn)A(0,1),l2過點(diǎn)B(5,0),如果l1l2,且l1與l2的距離為5,求l1、l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中日島爭端越來越引起社會關(guān)注,校對高一名學(xué)生進(jìn)行了一次知識測試,并從中了部學(xué)生的成績,滿分作為樣本,繪制了下面尚未完成的頻率分布表和頻率分布直方圖

1填寫答題卡頻率分布表中的空格, 補(bǔ)全頻率分布直方圖, 并標(biāo)出每個小矩形對應(yīng)的縱軸數(shù)據(jù);

2請你估算該年級的平均數(shù)及中位數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將甲、乙、丙、丁四名同學(xué)按一定順序排成一行,要求自左向右,且甲不排在第一,乙不排在第二,丙不排在第三,丁不排在第四,比如:乙甲丁丙是滿足要求的一種排法,試寫出他們四個人所有不同的排法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱中,,,點(diǎn)在線段上.

(1)若中點(diǎn),證明:平面

(2)當(dāng)時,求直線與平面所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】要產(chǎn)生[3,3]上的均勻隨機(jī)數(shù)y,現(xiàn)有[0,1]上的均勻隨機(jī)數(shù)x,則y可取為(  )

A. 3x B. 3x

C. 6x3 D. 6x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】商場銷售某一品牌的羊毛衫,購買人數(shù)是每件羊毛衫標(biāo)價的一次函數(shù),標(biāo)價越高,購買人數(shù)越少,把購買人數(shù)為零時的最低標(biāo)價稱為無效價格,已知無效價格為每件300元,已知這種羊毛衫的成本價是100元/件,商場以高于成本價的價格(標(biāo)價)出售.求:

(1)商場要獲取最大利潤,羊毛衫的標(biāo)價應(yīng)定為每件多少元?

(2)通常情況下,獲取最大利潤只是一種理想結(jié)果,如果商場要獲得最大利潤的75%,那么羊毛衫的標(biāo)價為每件多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為增強(qiáng)市民的節(jié)能環(huán)保意識,鄭州市面向全市征召義務(wù)宣傳志愿者. 從符合條件的500名志愿者中隨機(jī)抽取100名,其年齡頻率分布直方圖如圖所示,其中年齡分組區(qū)是: .

(Ⅰ)求圖中的值,并根據(jù)頻率分布直方圖估計(jì)這500名志愿者中年齡在歲的人數(shù);

(Ⅱ)在抽出的100名志愿者中按年齡采用分層抽樣的方法抽取10名參加中心廣場的宣傳活動,再從這10名志愿者中選取3名擔(dān)任主要負(fù)責(zé)人. 記這3名志愿者中“年齡低于35歲”的人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案