【題目】2019年,河北等8省公布了高考改革綜合方案將采取模式,即語文、數(shù)學(xué)、英語必考,然后考生先在物理、歷史中選擇1門,再在思想政治、地理、化學(xué)、生物中選擇2.為了更好進(jìn)行生涯規(guī)劃,張明同學(xué)對(duì)高一一年來的七次考試成績進(jìn)行統(tǒng)計(jì)分析,其中物理、歷史成績的莖葉圖如圖所示.

1)若張明同學(xué)隨機(jī)選擇3門功課,求他選到物理政治兩門功課的概率;

2)試根據(jù)莖葉圖分析張明同學(xué)應(yīng)在物理和歷史中選擇哪個(gè)學(xué)科?并闡述理由.

【答案】1;(2)從平均分來看,選擇物理歷史均可以;從方差的穩(wěn)定性來看,應(yīng)選擇物理;從最高分的情況來看,應(yīng)選擇歷史;理由見解析

【解析】

1)記物理、歷史分別為,政治、地理、化學(xué)、生物分別為,列出隨機(jī)選擇3門功課的情況,再列出選到物理政治兩門功課的情況,進(jìn)而求解即可;

(2)由莖葉圖求得物理成績的平均數(shù)和歷史成績的平均數(shù),根據(jù)莖葉圖判斷二者方差的關(guān)系,進(jìn)而判斷即可.

解:(1)記物理、歷史分別為,政治、地理、化學(xué)、生物分別為,

由題意可知有,,,,,,,,,,,,12種情況.

他選到物理政治兩門功課有,,,3種情況.

所以張明同學(xué)選到物理政治兩門功課的概率.

2)物理成績的平均分為,

歷史成績的平均分為,

由莖葉圖可知物理成績的方差歷史成績的方差

(如果計(jì)算,

故從平均分來看,選擇物理歷史學(xué)科均可以;從方差的穩(wěn)定性來看,應(yīng)選擇物理學(xué)科;

從最高分的情況來看,物理90分以上2次,歷史90分以上3次,說明歷史通過認(rèn)真?zhèn)淇寄酶叻直任锢頇C(jī)會(huì)大些,應(yīng)選擇歷史學(xué)科(答對(duì)一點(diǎn)即可).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】啟東市政府?dāng)M在蝶湖建一個(gè)旅游觀光項(xiàng)目,設(shè)計(jì)方案如下:如圖所示的圓O是圓形湖的邊界,沿線段AB,BC,CD,DA建一個(gè)觀景長廊,其中A,B,C,D是觀景長廊的四個(gè)出入口且都在圓O上,已知:BC=12百米,AB=8百米,在湖中P處和湖邊D處各建一個(gè)觀景亭,且它們關(guān)于直線AC對(duì)稱,在湖面建一條觀景橋APC.觀景亭的大小、觀景長廊、觀景橋的寬度均忽略不計(jì),設(shè)

1)若觀景長廊AD4百米,CD=AB,求由觀景長廊所圍成的四邊形ABCD內(nèi)的湖面面積;

2)當(dāng)時(shí),求三角形區(qū)域ADC內(nèi)的湖面面積的最大值;

3)若CD=8百米且規(guī)劃建亭點(diǎn)P在三角形ABC區(qū)域內(nèi)(不包括邊界),試判斷四邊形ABCP內(nèi)湖面面積是否有最大值?若有,求出最大值,并寫出此時(shí)的值;若沒有,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】旅行社為某旅行團(tuán)包飛機(jī)去旅游,其中旅行社的包機(jī)費(fèi)為15000元.旅游團(tuán)中的每人的飛機(jī)票按以下方式與旅行社結(jié)算:若旅游團(tuán)的人數(shù)不超過35人時(shí),飛機(jī)票每張收費(fèi)800元;若旅游團(tuán)的人數(shù)多于35人,則給予優(yōu)惠,每多1人,機(jī)票費(fèi)每張減少10元,但旅游團(tuán)的人數(shù)最多有60人.設(shè)旅行團(tuán)的人數(shù)為人,飛機(jī)票價(jià)格為元,旅行社的利潤為元.

(1)寫出飛機(jī)票價(jià)格元與旅行團(tuán)人數(shù)之間的函數(shù)關(guān)系式;

(2)當(dāng)旅游團(tuán)的人數(shù)為多少時(shí),旅行社可獲得最大利潤?求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,由直三棱柱和四棱錐構(gòu)成的幾何體中,,平面平面

(I)求證:;

(II)若M為中點(diǎn),求證:平面

(III)在線段BC上(含端點(diǎn))是否存在點(diǎn)P,使直線DP與平面所成的角為?若存在,求得值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

知圓錐曲線參數(shù)和定點(diǎn),、此圓錐曲線的左、右焦點(diǎn),以原點(diǎn)點(diǎn),以的正半軸為極軸建立極坐標(biāo)系.

1直線直角坐標(biāo)方程;

2經(jīng)過點(diǎn)與直線直的直線此圓錐曲線于、兩點(diǎn),求值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019中秋節(jié)期間,高速公路車輛較多,交警部門通過路面監(jiān)控裝置抽樣調(diào)查某一山區(qū)路段汽車行駛速度,采用的方法是:按到達(dá)監(jiān)控點(diǎn)先后順序,每隔50輛抽取一輛,總共抽取120輛,分別記下其行車速度,將行車速度()分成七段后得到如圖所示的頻率分布直方圖,據(jù)圖解答下列問題:

1)求的值,并說明交警部門采用的是什么抽樣方法?

2)求這120輛車行駛速度的眾數(shù)和中位數(shù)的估計(jì)值(精確到0.1);

3)若該路段的車速達(dá)到或超過即視為超速行駛,試根據(jù)樣本估計(jì)該路段車輛超速行駛的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)命題:

①函數(shù)的最大值為1;

“若,則”的逆命題為真命題;

③若為銳角三角形,則有;

④“”是“函數(shù)在區(qū)間內(nèi)單調(diào)遞增”的充分必要條件.

其中所有正確命題的序號(hào)為____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某生產(chǎn)企業(yè)研發(fā)了一種新產(chǎn)品,該新產(chǎn)品在某網(wǎng)店試銷一個(gè)階段后得到銷售單價(jià)和月銷售量之間的一組數(shù)據(jù),如下表所示:

銷售單價(jià)(元)

9

9.5

10

10.5

11

月銷售量(萬件)

11

10

8

6

5

(I)根據(jù)統(tǒng)計(jì)數(shù)據(jù),求出關(guān)于的回歸直線方程,并預(yù)測月銷售量不低于12萬件時(shí)銷售單價(jià)的最大值;

(II)生產(chǎn)企業(yè)與網(wǎng)店約定:若該新產(chǎn)品的月銷售量不低于10萬件,則生產(chǎn)企業(yè)獎(jiǎng)勵(lì)網(wǎng)店1萬元;若月銷售量不低于8萬件且不足10萬件,則生產(chǎn)企業(yè)獎(jiǎng)勵(lì)網(wǎng)店5000元;若月銷售量低于8萬件,則沒有獎(jiǎng)勵(lì). 現(xiàn)用樣本估計(jì)總體,從上述5個(gè)銷售單價(jià)中任選2個(gè)銷售單價(jià),求抽到的產(chǎn)品含有月銷售量不低于10萬件的概率.

參考公式:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為. 參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是奇函數(shù)(.

1)求實(shí)數(shù)的值;

2)試判斷函數(shù)上的單調(diào)性,并證明你的結(jié)論;

3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案