【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知圓錐曲線(
為參數(shù))和定點
,
、
是此圓錐曲線的左、右焦點,以原點
為極點,以
軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線的直角坐標(biāo)方程;
(2)經(jīng)過點且與直線
垂直的直線
交此圓錐曲線于
、
兩點,求
的值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于空間直角坐標(biāo)系中的一點
,有下列說法:
①點到坐標(biāo)原點的距離為
;
②的中點坐標(biāo)為
;
③點關(guān)于
軸對稱的點的坐標(biāo)為
;
④點關(guān)于坐標(biāo)原點對稱的點的坐標(biāo)為
;
⑤點關(guān)于坐標(biāo)平面
對稱的點的坐標(biāo)為
.
其中正確的個數(shù)是
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和Sn滿足,
(1)求數(shù)列{an}的通項公式;
(2)求證:數(shù)列{an}中的任意三項不可能成等差數(shù)列;
(3)設(shè),Tn為{bn}的前n項和,求證
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求曲線在點
處的切線方程和函數(shù)
的極值;
(Ⅱ)若對任意的,
,都有
成立,求實數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域為[-1,5],部分對應(yīng)值如下表,
的導(dǎo)函數(shù)
的圖象如圖所示,下列關(guān)于
的命題:
-1 | 0 | 4 | 5 | |
1 | 2 | 2 | 1 |
①函數(shù)的極大值點為0,4;
②函數(shù)在[0,2]上是減函數(shù);
③如果當(dāng)時,
的最大值是2,那么
的最大值為4;
④當(dāng)時,函數(shù)
有4個零點.
其中正確命題的序號是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù),有下列結(jié)論:
①的最大值為
;
②的最小正周期是
;
③在區(qū)間
上是減函數(shù);
④直線是函數(shù)
的一條對稱軸方程.
其中正確結(jié)論的序號是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一個八面體各棱長均為1,四邊形ABCD為正方形,則下列命題中不正確的是
A. 不平行的兩條棱所在直線所成的角為或
B. 四邊形AECF為正方形
C. 點A到平面BCE的距離為 D. 該八面體的頂點在同一個球面上
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點
為極點,
軸正半軸為極軸建立極坐標(biāo)系,曲線
,
極坐標(biāo)方程分別為
,
.
(Ⅰ)和
交點的極坐標(biāo);
(Ⅱ)直線的參數(shù)方程為
(
為參數(shù)),
與
軸的交點為
,且與
交于
,
兩點,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面
為正方形,
平面
,
,
,
分別是
,
的中點.
(Ⅰ)求證: 平面
;
(Ⅱ)求三棱錐的體積;
(Ⅲ)求證:平面平面
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com