【題目】若方程x2+ax+2b=0的一個(gè)根在(0,1)內(nèi),另一個(gè)根在(1,2)內(nèi),則 的取值范圍是(
A.[﹣2,1)
B.(﹣2,1)
C.(﹣∞,﹣2)∪(1,+∞)
D.(﹣∞,﹣2]∪[1,+∞)

【答案】B
【解析】解:設(shè)f(x)=x2+ax+2b,
∵方程x2+ax+2b=0的一個(gè)根在區(qū)間(0,1)內(nèi),另一個(gè)根在區(qū)間(1,2)內(nèi),
∴可得
作出滿(mǎn)足上述不等式組對(duì)應(yīng)的點(diǎn)(a,b)所在的平面區(qū)域,
得到△ABC及其內(nèi)部,即如圖所示的陰影部分(不含邊界).
其中A(﹣3,1),B(﹣2,0),C(﹣1,0),
設(shè)點(diǎn)E(a,b)為區(qū)域內(nèi)的任意一點(diǎn),
則k= ,表示點(diǎn)E(a,b)與點(diǎn)D(﹣2,2)連線(xiàn)的斜率.
∵KAD=1,kCD=﹣2,結(jié)合圖形可知:KAD<k<KCD ,
∴k的取值范圍是(﹣2,1),
故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),且曲線(xiàn)處的切線(xiàn)與平行.

(1)求的值;

(2)當(dāng)時(shí),試探究函數(shù)的零點(diǎn)個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某租賃公司擁有汽車(chē)100輛.當(dāng)每輛車(chē)的月租金為3000元時(shí),可全部租出.當(dāng)每輛車(chē)的月租金每增加50元時(shí),未租出的車(chē)將會(huì)增加一輛.租出的車(chē)每輛每月需要維護(hù)費(fèi)150元,未租出的車(chē)每輛每月需要維護(hù)費(fèi)50元.
(Ⅰ)當(dāng)每輛車(chē)的月租金定為3600元時(shí),能租出多少輛車(chē)?
(Ⅱ)當(dāng)每輛車(chē)的月租金定為多少元時(shí),租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=log2x,x∈(4,8),則函數(shù)y=f(x2)+ 的值域?yàn)椋?)
A.[8,10)
B.( ,10)
C.(8,
D.( ,10)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)在其定義域內(nèi)是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;

(2)若,令為自然對(duì)數(shù)的底數(shù)),求證:存在,使

請(qǐng)考生在第22、23兩題中任選一題作答.注意:只能做所選定的題目.如果多做,則按所做的第一個(gè)題目計(jì)分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題P:方程x2+mx+1=0有兩個(gè)不等的實(shí)數(shù)根,命題q:方程4x2+4(m﹣2)x+1=0無(wú)實(shí)數(shù)根.若p∧q為假,若p∨q為真,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)y=ax(a>0且a≠1)在[1,2]上的最大值是M,最小值是m,且M=2m,則實(shí)數(shù)a=( )
A.
B.2
C.
且2
D.
或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知復(fù)數(shù)z1 , z2滿(mǎn)足|z1|=|z2|=1,|z1﹣z2|= ,則|z1+z2|等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)),曲線(xiàn)在點(diǎn)處的切線(xiàn)與直線(xiàn)垂直.

(1)試比較的大小,并說(shuō)明理由;

(2)若函數(shù)有兩個(gè)不同的零點(diǎn),證明: .

查看答案和解析>>

同步練習(xí)冊(cè)答案